C++ - STL容器

发布时间 2023-10-11 15:13:28作者: [BORUTO]

3 STL- 常用容器

3.0 string(字符串)

 

3.0.1 string基本概念

本质:

  • string是C++风格的字符串,而string本质上是一个类

 

string和char * 区别:

  • char * 是一个指针

  • string是一个类,类内部封装了char*,管理这个字符串,是一个char*型的容器。

 

特点:

string 类内部封装了很多成员方法

例如:查找find,拷贝copy,删除delete 替换replace,插入insert

string管理char*所分配的内存,不用担心复制越界和取值越界等,由类内部进行负责

 

3.0.2 string构造函数

构造函数原型:

  • string(); //创建一个空的字符串 例如: string str; string(const char* s); //使用字符串s初始化

  • string(const string& str); //使用一个string对象初始化另一个string对象

  • string(int n, char c); //使用n个字符c初始化

 

示例:

#include <string>
//string构造
void test01()
{
	string s1; //创建空字符串,调用无参构造函数
	cout << "str1 = " << s1 << endl;

	const char* str = "hello world";
	string s2(str); //把c_string转换成了string

	cout << "str2 = " << s2 << endl;

	string s3(s2); //调用拷贝构造函数
	cout << "str3 = " << s3 << endl;

	string s4(10, 'a');
	cout << "str3 = " << s3 << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:string的多种构造方式没有可比性,灵活使用即可

 

 

 

 

3.0.3 string赋值操作

功能描述:

  • 给string字符串进行赋值

 

赋值的函数原型:

  • string& operator=(const char* s); //char*类型字符串 赋值给当前的字符串

  • string& operator=(const string &s); //把字符串s赋给当前的字符串

  • string& operator=(char c); //字符赋值给当前的字符串

  • string& assign(const char *s); //把字符串s赋给当前的字符串

  • string& assign(const char *s, int n); //把字符串s的前n个字符赋给当前的字符串

  • string& assign(const string &s); //把字符串s赋给当前字符串

  • string& assign(int n, char c); //用n个字符c赋给当前字符串

 

示例:

//赋值
void test01()
{
	string str1;
	str1 = "hello world";
	cout << "str1 = " << str1 << endl;

	string str2;
	str2 = str1;
	cout << "str2 = " << str2 << endl;

	string str3;
	str3 = 'a';
	cout << "str3 = " << str3 << endl;

	string str4;
	str4.assign("hello c++");
	cout << "str4 = " << str4 << endl;

	string str5;
	str5.assign("hello c++",5);
	cout << "str5 = " << str5 << endl;


	string str6;
	str6.assign(str5);
	cout << "str6 = " << str6 << endl;

	string str7;
	str7.assign(5, 'x');
	cout << "str7 = " << str7 << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

string的赋值方式很多,operator= 这种方式是比较实用的

 

 

 

 

3.0.4 string字符串拼接

功能描述:

  • 实现在字符串末尾拼接字符串

 

函数原型:

  • string& operator+=(const char* str); //重载+=操作符

  • string& operator+=(const char c); //重载+=操作符

  • string& operator+=(const string& str); //重载+=操作符

  • string& append(const char *s); //把字符串s连接到当前字符串结尾

  • string& append(const char *s, int n); //把字符串s的前n个字符连接到当前字符串结尾

  • string& append(const string &s); //同operator+=(const string& str)

  • string& append(const string &s, int pos, int n);//字符串s中从pos开始的n个字符连接到字符串结尾

 

示例:

//字符串拼接
void test01()
{
	string str1 = "我";

	str1 += "爱玩游戏";

	cout << "str1 = " << str1 << endl;
	
	str1 += ':';

	cout << "str1 = " << str1 << endl;

	string str2 = "LOL DNF";

	str1 += str2;

	cout << "str1 = " << str1 << endl;

	string str3 = "I";
	str3.append(" love ");
	str3.append("game abcde", 4);
	//str3.append(str2);
	str3.append(str2, 4, 3); // 从下标4位置开始 ,截取3个字符,拼接到字符串末尾
	cout << "str3 = " << str3 << endl;
}
int main() {

	test01();

	system("pause");

	return 0;
}

总结:字符串拼接的重载版本很多,初学阶段记住几种即可

 

 

 

3.0.5 string查找和替换

功能描述:

  • 查找:查找指定字符串是否存在

  • 替换:在指定的位置替换字符串

 

函数原型:

  • int find(const string& str, int pos = 0) const; //查找str第一次出现位置,从pos开始查找

  • int find(const char* s, int pos = 0) const; //查找s第一次出现位置,从pos开始查找

  • int find(const char* s, int pos, int n) const; //从pos位置查找s的前n个字符第一次位置

  • int find(const char c, int pos = 0) const; //查找字符c第一次出现位置

  • int rfind(const string& str, int pos = npos) const; //查找str最后一次位置,从pos开始查找

  • int rfind(const char* s, int pos = npos) const; //查找s最后一次出现位置,从pos开始查找

  • int rfind(const char* s, int pos, int n) const; //从pos查找s的前n个字符最后一次位置

  • int rfind(const char c, int pos = 0) const; //查找字符c最后一次出现位置

  • string& replace(int pos, int n, const string& str); //替换从pos开始n个字符为字符串str

  • string& replace(int pos, int n,const char* s); //替换从pos开始的n个字符为字符串s

 

示例:

//查找和替换
void test01()
{
	//查找
	string str1 = "abcdefgde";

	int pos = str1.find("de");

	if (pos == -1)
	{
		cout << "未找到" << endl;
	}
	else
	{
		cout << "pos = " << pos << endl;
	}
	

	pos = str1.rfind("de");

	cout << "pos = " << pos << endl;

}

void test02()
{
	//替换
	string str1 = "abcdefgde";
	str1.replace(1, 3, "1111");

	cout << "str1 = " << str1 << endl;
}

int main() {

	//test01();
	//test02();

	system("pause");

	return 0;
}

总结:

  • find查找是从左往后,rfind从右往左

  • find找到字符串后返回查找的第一个字符位置,找不到返回-1

  • replace在替换时,要指定从哪个位置起,多少个字符,替换成什么样的字符串

 

 

 

 

 

 

 

3.0.6 string字符串比较

功能描述:

  • 字符串之间的比较

比较方式:

  • 字符串比较是按字符的ASCII码进行对比

= 返回 0

> 返回 1

< 返回 -1

 

函数原型:

  • int compare(const string &s) const; //与字符串s比较

  • int compare(const char *s) const; //与字符串s比较

 

 

示例:

//字符串比较
void test01()
{

	string s1 = "hello";
	string s2 = "aello";

	int ret = s1.compare(s2);

	if (ret == 0) {
		cout << "s1 等于 s2" << endl;
	}
	else if (ret > 0)
	{
		cout << "s1 大于 s2" << endl;
	}
	else
	{
		cout << "s1 小于 s2" << endl;
	}

}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:字符串对比主要是用于比较两个字符串是否相等,判断谁大谁小的意义并不是很大

 

 

3.0.7 string字符存取

 

string中单个字符存取方式有两种

 

  • char& operator[](int n); //通过[]方式取字符

  • char& at(int n); //通过at方法获取字符

 

 

示例:

void test01()
{
	string str = "hello world";

	for (int i = 0; i < str.size(); i++)
	{
		cout << str[i] << " ";
	}
	cout << endl;

	for (int i = 0; i < str.size(); i++)
	{
		cout << str.at(i) << " ";
	}
	cout << endl;


	//字符修改
	str[0] = 'x';
	str.at(1) = 'x';
	cout << str << endl;
	
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:string字符串中单个字符存取有两种方式,利用 [ ] 或 at

 

 

 

 

3.0.8 string插入和删除

功能描述:

  • 对string字符串进行插入和删除字符操作

函数原型:

  • string& insert(int pos, const char* s); //插入字符串

  • string& insert(int pos, const string& str); //插入字符串

  • string& insert(int pos, int n, char c); //在指定位置插入n个字符c

  • string& erase(int pos, int n = npos); //删除从Pos开始的n个字符

 

 

示例:

//字符串插入和删除
void test01()
{
	string str = "hello";
	str.insert(1, "111");
	cout << str << endl;

	str.erase(1, 3);  //从1号位置开始3个字符
	cout << str << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:插入和删除的起始下标都是从0开始

 

 

 

 

 

3.0.9 string子串

功能描述:

  • 从字符串中获取想要的子串

 

函数原型:

  • string substr(int pos = 0, int n = npos) const; //返回由pos开始的n个字符组成的字符串

 

示例:

//子串
void test01()
{

	string str = "abcdefg";
	string subStr = str.substr(1, 3);
	cout << "subStr = " << subStr << endl;

	string email = "hello@sina.com";
	int pos = email.find("@");
	string username = email.substr(0, pos);
	cout << "username: " << username << endl;

}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:灵活的运用求子串功能,可以在实际开发中获取有效的信息

 

3.1 array(数组)

3.1.1 array基本概念

array是C++11中新增的容器,它与其他容器不同的是,它的大小是固定的,无法动态扩展或收缩,只允许访问或者替换存储的元素。

 

3.1.2 array头文件

#include <array>

 

3.1.3 array定义

array<int,5> myarray = {1,2,3,4,5};
array<int,5> otherarray = myarray;
 
int b[5];
//编译报错,error: no viable conversion from 'int [5]' to 'array<int, 5>
array<int,5> otherarray2 = b;
 
int c=5;
//编译报错,error: non-type template argument is not a constant expression
array<int,5> otherarray3;
 
int d[c];//普通数组是可以支持用变量初始化大小,所以std::array有点鸡肋呀

 

3.1.4 array初始化

std::array<double, 10> values {};
std::array<double, 10> values {0.5,1.0,1.5,,2.0};

 

3.1.5 array访问

可通过下标运算符[]对元素进行操作,还可以通过at/front/back进行操作

for (int i = 0; i < 5; i++)
{
    cout << setw(10) << << myarray.at(i) << endl;
}

 

3.1.6 array遍历

可以通过正向和反向迭代器对元素进行遍历

for (auto it = myarray.begin(); it != myarray.end();++it)
{
    cout << *it << endl;
}

 

3.1.7 array的函数

成员函数 功能
begin() 返回指向容器中第一个元素的随机访问迭代器。
end() 返回指向容器最后一个元素之后一个位置的随机访问迭代器,通常和 begin() 结合使用。
rbegin() 返回指向最后一个元素的随机访问迭代器。
rend() 返回指向第一个元素之前一个位置的随机访问迭代器。
crbegin() 和 rbegin() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
crend() 和 rend() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
size() 返回容器中当前元素的数量,其值始终等于初始化 array 类的第二个模板参数 N。
max_size() 返回容器可容纳元素的最大数量,其值始终等于初始化 array 类的第二个模板参数 N。
empty() 判断容器是否为空,和通过 size()==0 的判断条件功能相同,但其效率可能更快。
at(n) 返回容器中 n 位置处元素的引用,该函数自动检查 n 是否在有效的范围内,如果不是则抛出 out_of_range 异常。
front() 返回容器中第一个元素的直接引用,该函数不适用于空的 array 容器。
back() 返回容器中最后一个元素的直接应用,该函数同样不适用于空的 array 容器。
data() 返回一个指向容器首个元素的指针。利用该指针,可实现复制容器中所有元素等类似功能。
fill(val) 将 val 这个值赋值给容器中的每个元素。
array1.swap(array2) 交换 array1 和 array2 容器中的所有元素,但前提是它们具有相同的长度和类型。



 

3.2 vector(动态数组)

 

3.2.1 vector基本概念

功能:

  • vector数据结构和数组非常相似,也称为单端数组

 

vector与普通数组区别:

  • 不同之处在于数组是静态空间,而vector可以动态扩展

 

动态扩展:

  • 并不是在原空间之后续接新空间,而是找更大的内存空间,然后将原数据拷贝新空间,释放原空间

 

说明: 2015-11-10_151152

 

  • vector容器的迭代器是支持随机访问的迭代器

 

 

3.2.2 vector构造函数

 

功能描述:

  • 创建vector容器

 

函数原型:

  • vector<T> v; //采用模板实现类实现,默认构造函数

  • vector(v.begin(), v.end()); //将v[begin(), end())区间中的元素拷贝给本身。

  • vector(n, elem); //构造函数将n个elem拷贝给本身。

  • vector(const vector &vec); //拷贝构造函数。

 

示例:

#include <vector>

void printVector(vector<int>& v) {

	for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

void test01()
{
	vector<int> v1; //无参构造
	for (int i = 0; i < 10; i++)
	{
		v1.push_back(i);
	}
	printVector(v1);

	vector<int> v2(v1.begin(), v1.end());
	printVector(v2);

	vector<int> v3(10, 100);
	printVector(v3);
	
	vector<int> v4(v3);
	printVector(v4);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:vector的多种构造方式没有可比性,灵活使用即可

 

 

 

 

3.2.3 vector赋值操作

 

功能描述:

  • 给vector容器进行赋值

 

函数原型:

  • vector& operator=(const vector &vec);//重载等号操作符

  • assign(beg, end); //将[beg, end)区间中的数据拷贝赋值给本身。

  • assign(n, elem); //将n个elem拷贝赋值给本身。

 

 

示例:

#include <vector>

void printVector(vector<int>& v) {

	for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

//赋值操作
void test01()
{
	vector<int> v1; //无参构造
	for (int i = 0; i < 10; i++)
	{
		v1.push_back(i);
	}
	printVector(v1);

	vector<int>v2;
	v2 = v1;
	printVector(v2);

	vector<int>v3;
	v3.assign(v1.begin(), v1.end());
	printVector(v3);

	vector<int>v4;
	v4.assign(10, 100);
	printVector(v4);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结: vector赋值方式比较简单,使用operator=,或者assign都可以

 

 

 

3.2.4 vector容量和大小

功能描述:

  • 对vector容器的容量和大小操作

 

函数原型:

  • empty(); //判断容器是否为空

  • capacity(); //容器的容量

  • size(); //返回容器中元素的个数

  • resize(int num); //重新指定容器的长度为num,若容器变长,则以默认值填充新位置。

    //如果容器变短,则末尾超出容器长度的元素被删除。

  • resize(int num, elem); //重新指定容器的长度为num,若容器变长,则以elem值填充新位置。

    //如果容器变短,则末尾超出容器长度的元素被删除

 

示例:

#include <vector>

void printVector(vector<int>& v) {

	for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

void test01()
{
	vector<int> v1;
	for (int i = 0; i < 10; i++)
	{
		v1.push_back(i);
	}
	printVector(v1);
	if (v1.empty())
	{
		cout << "v1为空" << endl;
	}
	else
	{
		cout << "v1不为空" << endl;
		cout << "v1的容量 = " << v1.capacity() << endl;
		cout << "v1的大小 = " << v1.size() << endl;
	}

	//resize 重新指定大小 ,若指定的更大,默认用0填充新位置,可以利用重载版本替换默认填充
	v1.resize(15,10);
	printVector(v1);

	//resize 重新指定大小 ,若指定的更小,超出部分元素被删除
	v1.resize(5);
	printVector(v1);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 判断是否为空 --- empty

  • 返回元素个数 --- size

  • 返回容器容量 --- capacity

  • 重新指定大小 --- resize

 

 

 

 

 

 

3.2.5 vector插入和删除

功能描述:

  • 对vector容器进行插入、删除操作

 

函数原型:

  • push_back(ele); //尾部插入元素ele

  • pop_back(); //删除最后一个元素

  • insert(const_iterator pos, ele); //迭代器指向位置pos插入元素ele

  • insert(const_iterator pos, int count,ele);//迭代器指向位置pos插入count个元素ele

  • erase(const_iterator pos); //删除迭代器指向的元素

  • erase(const_iterator start, const_iterator end);//删除迭代器从start到end之间的元素

  • clear(); //删除容器中所有元素

 

 

示例:


#include <vector>

void printVector(vector<int>& v) {

	for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

//插入和删除
void test01()
{
	vector<int> v1;
	//尾插
	v1.push_back(10);
	v1.push_back(20);
	v1.push_back(30);
	v1.push_back(40);
	v1.push_back(50);
	printVector(v1);
	//尾删
	v1.pop_back();
	printVector(v1);
	//插入
	v1.insert(v1.begin(), 100);
	printVector(v1);

	v1.insert(v1.begin(), 2, 1000);
	printVector(v1);

	//删除
	v1.erase(v1.begin());
	printVector(v1);

	//清空
	v1.erase(v1.begin(), v1.end());
	v1.clear();
	printVector(v1);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 尾插 --- push_back

  • 尾删 --- pop_back

  • 插入 --- insert (位置迭代器)

  • 删除 --- erase (位置迭代器)

  • 清空 --- clear

 

 

 

 

 

 

3.2.6 vector数据存取

 

功能描述:

  • 对vector中的数据的存取操作

 

函数原型:

  • at(int idx); //返回索引idx所指的数据

  • operator[]; //返回索引idx所指的数据

  • front(); //返回容器中第一个数据元素

  • back(); //返回容器中最后一个数据元素

 

 

示例:

#include <vector>

void test01()
{
	vector<int>v1;
	for (int i = 0; i < 10; i++)
	{
		v1.push_back(i);
	}

	for (int i = 0; i < v1.size(); i++)
	{
		cout << v1[i] << " ";
	}
	cout << endl;

	for (int i = 0; i < v1.size(); i++)
	{
		cout << v1.at(i) << " ";
	}
	cout << endl;

	cout << "v1的第一个元素为: " << v1.front() << endl;
	cout << "v1的最后一个元素为: " << v1.back() << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 除了用迭代器获取vector容器中元素,[ ]和at也可以

  • front返回容器第一个元素

  • back返回容器最后一个元素

 

 

 

 

 

3.2.7 vector互换容器

功能描述:

  • 实现两个容器内元素进行互换

 

函数原型:

  • swap(vec); // 将vec与本身的元素互换

 

 

示例:

#include <vector>

void printVector(vector<int>& v) {

	for (vector<int>::iterator it = v.begin(); it != v.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

void test01()
{
	vector<int>v1;
	for (int i = 0; i < 10; i++)
	{
		v1.push_back(i);
	}
	printVector(v1);

	vector<int>v2;
	for (int i = 10; i > 0; i--)
	{
		v2.push_back(i);
	}
	printVector(v2);

	//互换容器
	cout << "互换后" << endl;
	v1.swap(v2);
	printVector(v1);
	printVector(v2);
}

void test02()
{
	vector<int> v;
	for (int i = 0; i < 100000; i++) {
		v.push_back(i);
	}

	cout << "v的容量为:" << v.capacity() << endl;
	cout << "v的大小为:" << v.size() << endl;

	v.resize(3);

	cout << "v的容量为:" << v.capacity() << endl;
	cout << "v的大小为:" << v.size() << endl;

	//收缩内存
	vector<int>(v).swap(v); //匿名对象

	cout << "v的容量为:" << v.capacity() << endl;
	cout << "v的大小为:" << v.size() << endl;
}

int main() {

	test01();

	test02();

	system("pause");

	return 0;
}

总结:swap可以使两个容器互换,可以达到实用的收缩内存效果

 

 

 

 

3.2.8 vector预留空间

功能描述:

  • 减少vector在动态扩展容量时的扩展次数

 

函数原型:

  • reserve(int len);//容器预留len个元素长度,预留位置不初始化,元素不可访问。

     

示例:

#include <vector>

void test01()
{
	vector<int> v;

	//预留空间
	v.reserve(100000);

	int num = 0;
	int* p = NULL;
	for (int i = 0; i < 100000; i++) {
		v.push_back(i);
		if (p != &v[0]) {
			p = &v[0];
			num++;
		}
	}

	cout << "num:" << num << endl;
}

int main() {

	test01();
    
	system("pause");

	return 0;
}

总结:如果数据量较大,可以一开始利用reserve预留空间

 

 

 

 

 

3.3 deque(双端队列)

3.3.1 deque容器基本概念

 

功能:

  • 双端数组,可以对头端进行插入删除操作

 

deque与vector区别:

  • vector对于头部的插入删除效率低,数据量越大,效率越低

  • deque相对而言,对头部的插入删除速度回比vector快

  • vector访问元素时的速度会比deque快,这和两者内部实现有关

说明: 2015-11-19_204101

 

deque内部工作原理:

deque内部有个中控器,维护每段缓冲区中的内容,缓冲区中存放真实数据

中控器维护的是每个缓冲区的地址,使得使用deque时像一片连续的内存空间

clip_image002-1547547896341

  • deque容器的迭代器也是支持随机访问的

 

3.3.2 deque构造函数

功能描述:

  • deque容器构造

 

函数原型:

  • deque<T> deqT; //默认构造形式

  • deque(beg, end); //构造函数将[beg, end)区间中的元素拷贝给本身。

  • deque(n, elem); //构造函数将n个elem拷贝给本身。

  • deque(const deque &deq); //拷贝构造函数

 

 

示例:

#include <deque>

void printDeque(const deque<int>& d) 
{
	for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
		cout << *it << " ";

	}
	cout << endl;
}
//deque构造
void test01() {

	deque<int> d1; //无参构造函数
	for (int i = 0; i < 10; i++)
	{
		d1.push_back(i);
	}
	printDeque(d1);
	deque<int> d2(d1.begin(),d1.end());
	printDeque(d2);

	deque<int>d3(10,100);
	printDeque(d3);

	deque<int>d4 = d3;
	printDeque(d4);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:deque容器和vector容器的构造方式几乎一致,灵活使用即可

 

 

 

 

3.3.3 deque赋值操作

 

功能描述:

  • 给deque容器进行赋值

 

函数原型:

  • deque& operator=(const deque &deq); //重载等号操作符

  • assign(beg, end); //将[beg, end)区间中的数据拷贝赋值给本身。

  • assign(n, elem); //将n个elem拷贝赋值给本身。

 

 

示例:

#include <deque>

void printDeque(const deque<int>& d) 
{
	for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
		cout << *it << " ";

	}
	cout << endl;
}
//赋值操作
void test01()
{
	deque<int> d1;
	for (int i = 0; i < 10; i++)
	{
		d1.push_back(i);
	}
	printDeque(d1);

	deque<int>d2;
	d2 = d1;
	printDeque(d2);

	deque<int>d3;
	d3.assign(d1.begin(), d1.end());
	printDeque(d3);

	deque<int>d4;
	d4.assign(10, 100);
	printDeque(d4);

}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:deque赋值操作也与vector相同,需熟练掌握

 

 

 

3.3.4 deque大小操作

功能描述:

  • 对deque容器的大小进行操作

 

函数原型:

  • deque.empty(); //判断容器是否为空

  • deque.size(); //返回容器中元素的个数

  • deque.resize(num); //重新指定容器的长度为num,若容器变长,则以默认值填充新位置。

    //如果容器变短,则末尾超出容器长度的元素被删除。

  • deque.resize(num, elem); //重新指定容器的长度为num,若容器变长,则以elem值填充新位置。

    //如果容器变短,则末尾超出容器长度的元素被删除。

     

 

示例:

#include <deque>

void printDeque(const deque<int>& d) 
{
	for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
		cout << *it << " ";

	}
	cout << endl;
}

//大小操作
void test01()
{
	deque<int> d1;
	for (int i = 0; i < 10; i++)
	{
		d1.push_back(i);
	}
	printDeque(d1);

	//判断容器是否为空
	if (d1.empty()) {
		cout << "d1为空!" << endl;
	}
	else {
		cout << "d1不为空!" << endl;
		//统计大小
		cout << "d1的大小为:" << d1.size() << endl;
	}

	//重新指定大小
	d1.resize(15, 1);
	printDeque(d1);

	d1.resize(5);
	printDeque(d1);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • deque没有容量的概念

  • 判断是否为空 --- empty

  • 返回元素个数 --- size

  • 重新指定个数 --- resize

 

 

 

 

3.3.5 deque 插入和删除

功能描述:

  • 向deque容器中插入和删除数据

 

函数原型:

两端插入操作:

  • push_back(elem); //在容器尾部添加一个数据

  • push_front(elem); //在容器头部插入一个数据

  • pop_back(); //删除容器最后一个数据

  • pop_front(); //删除容器第一个数据

指定位置操作:

  • insert(pos,elem); //在pos位置插入一个elem元素的拷贝,返回新数据的位置。

  • insert(pos,n,elem); //在pos位置插入n个elem数据,无返回值。

  • insert(pos,beg,end); //在pos位置插入[beg,end)区间的数据,无返回值。

  • clear(); //清空容器的所有数据

  • erase(beg,end); //删除[beg,end)区间的数据,返回下一个数据的位置。

  • erase(pos); //删除pos位置的数据,返回下一个数据的位置。

     

     

 

示例:

#include <deque>

void printDeque(const deque<int>& d) 
{
	for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
		cout << *it << " ";

	}
	cout << endl;
}
//两端操作
void test01()
{
	deque<int> d;
	//尾插
	d.push_back(10);
	d.push_back(20);
	//头插
	d.push_front(100);
	d.push_front(200);

	printDeque(d);

	//尾删
	d.pop_back();
	//头删
	d.pop_front();
	printDeque(d);
}

//插入
void test02()
{
	deque<int> d;
	d.push_back(10);
	d.push_back(20);
	d.push_front(100);
	d.push_front(200);
	printDeque(d);

	d.insert(d.begin(), 1000);
	printDeque(d);

	d.insert(d.begin(), 2,10000);
	printDeque(d);

	deque<int>d2;
	d2.push_back(1);
	d2.push_back(2);
	d2.push_back(3);

	d.insert(d.begin(), d2.begin(), d2.end());
	printDeque(d);

}

//删除
void test03()
{
	deque<int> d;
	d.push_back(10);
	d.push_back(20);
	d.push_front(100);
	d.push_front(200);
	printDeque(d);

	d.erase(d.begin());
	printDeque(d);

	d.erase(d.begin(), d.end());
	d.clear();
	printDeque(d);
}

int main() {

	//test01();

	//test02();

    test03();
    
	system("pause");

	return 0;
}

总结:

  • 插入和删除提供的位置是迭代器!

  • 尾插 --- push_back

  • 尾删 --- pop_back

  • 头插 --- push_front

  • 头删 --- pop_front

 

 

 

 

 

3.3.6 deque 数据存取

 

功能描述:

  • 对deque 中的数据的存取操作

 

函数原型:

  • at(int idx); //返回索引idx所指的数据

  • operator[]; //返回索引idx所指的数据

  • front(); //返回容器中第一个数据元素

  • back(); //返回容器中最后一个数据元素

 

示例:

#include <deque>

void printDeque(const deque<int>& d) 
{
	for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
		cout << *it << " ";

	}
	cout << endl;
}

//数据存取
void test01()
{

	deque<int> d;
	d.push_back(10);
	d.push_back(20);
	d.push_front(100);
	d.push_front(200);

	for (int i = 0; i < d.size(); i++) {
		cout << d[i] << " ";
	}
	cout << endl;


	for (int i = 0; i < d.size(); i++) {
		cout << d.at(i) << " ";
	}
	cout << endl;

	cout << "front:" << d.front() << endl;

	cout << "back:" << d.back() << endl;

}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 除了用迭代器获取deque容器中元素,[ ]和at也可以

  • front返回容器第一个元素

  • back返回容器最后一个元素

 

 

 

 

 

 

3.3.7 deque 排序

功能描述:

  • 利用算法实现对deque容器进行排序

 

算法:

  • sort(iterator beg, iterator end) //对beg和end区间内元素进行排序

 

 

示例:

#include <deque>
#include <algorithm>

void printDeque(const deque<int>& d) 
{
	for (deque<int>::const_iterator it = d.begin(); it != d.end(); it++) {
		cout << *it << " ";

	}
	cout << endl;
}

void test01()
{

	deque<int> d;
	d.push_back(10);
	d.push_back(20);
	d.push_front(100);
	d.push_front(200);

	printDeque(d);
	sort(d.begin(), d.end());
	printDeque(d);

}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:sort算法非常实用,使用时包含头文件 algorithm即可

 

 

 

 

 

3.4 案例-评委打分

 

3.4.1 案例描述

有5名选手:选手ABCDE,10个评委分别对每一名选手打分,去除最高分,去除评委中最低分,取平均分。

 

3.4.2 实现步骤

  1. 创建五名选手,放到vector中

  2. 遍历vector容器,取出来每一个选手,执行for循环,可以把10个评分打分存到deque容器中

  3. sort算法对deque容器中分数排序,去除最高和最低分

  4. deque容器遍历一遍,累加总分

  5. 获取平均分

 

 

示例代码:

//选手类
class Person
{
public:
	Person(string name, int score)
	{
		this->m_Name = name;
		this->m_Score = score;
	}

	string m_Name; //姓名
	int m_Score;  //平均分
};

void createPerson(vector<Person>&v)
{
	string nameSeed = "ABCDE";
	for (int i = 0; i < 5; i++)
	{
		string name = "选手";
		name += nameSeed[i];

		int score = 0;

		Person p(name, score);

		//将创建的person对象 放入到容器中
		v.push_back(p);
	}
}

//打分
void setScore(vector<Person>&v)
{
	for (vector<Person>::iterator it = v.begin(); it != v.end(); it++)
	{
		//将评委的分数 放入到deque容器中
		deque<int>d;
		for (int i = 0; i < 10; i++)
		{
			int score = rand() % 41 + 60;  // 60 ~ 100
			d.push_back(score);
		}

		//cout << "选手: " << it->m_Name << " 打分: " << endl;
		//for (deque<int>::iterator dit = d.begin(); dit != d.end(); dit++)
		//{
		//	cout << *dit << " ";
		//}
		//cout << endl;

		//排序
		sort(d.begin(), d.end());

		//去除最高和最低分
		d.pop_back();
		d.pop_front();

		//取平均分
		int sum = 0;
		for (deque<int>::iterator dit = d.begin(); dit != d.end(); dit++)
		{
			sum += *dit; //累加每个评委的分数
		}

		int avg = sum / d.size();

		//将平均分 赋值给选手身上
		it->m_Score = avg;
	}

}

void showScore(vector<Person>&v)
{
	for (vector<Person>::iterator it = v.begin(); it != v.end(); it++)
	{
		cout << "姓名: " << it->m_Name << " 平均分: " << it->m_Score << endl;
	}
}

int main() {

	//随机数种子
	srand((unsigned int)time(NULL));

	//1、创建5名选手
	vector<Person>v;  //存放选手容器
	createPerson(v);

	//测试
	//for (vector<Person>::iterator it = v.begin(); it != v.end(); it++)
	//{
	//	cout << "姓名: " << (*it).m_Name << " 分数: " << (*it).m_Score << endl;
	//}

	//2、给5名选手打分
	setScore(v);

	//3、显示最后得分
	showScore(v);

	system("pause");

	return 0;
}

总结: 选取不同的容器操作数据,可以提升代码的效率

 

 

 

3.5 stack(栈)

3.5.1 stack 基本概念

 

概念:stack是一种先进后出(First In Last Out,FILO)的数据结构,它只有一个出口

 

 

说明: 2015-11-15_195707

栈中只有顶端的元素才可以被外界使用,因此栈不允许有遍历行为

栈中进入数据称为 --- 入栈 push

栈中弹出数据称为 --- 出栈 pop

 

生活中的栈:

img

 

 

img

 

3.5.2 stack 常用接口

功能描述:栈容器常用的对外接口

 

构造函数:

  • stack<T> stk; //stack采用模板类实现, stack对象的默认构造形式

  • stack(const stack &stk); //拷贝构造函数

赋值操作:

  • stack& operator=(const stack &stk); //重载等号操作符

数据存取:

  • push(elem); //向栈顶添加元素

  • pop(); //从栈顶移除第一个元素

  • top(); //返回栈顶元素

大小操作:

  • empty(); //判断堆栈是否为空

  • size(); //返回栈的大小

 

 

示例:

#include <stack>

//栈容器常用接口
void test01()
{
	//创建栈容器 栈容器必须符合先进后出
	stack<int> s;

	//向栈中添加元素,叫做 压栈 入栈
	s.push(10);
	s.push(20);
	s.push(30);

	while (!s.empty()) {
		//输出栈顶元素
		cout << "栈顶元素为: " << s.top() << endl;
		//弹出栈顶元素
		s.pop();
	}
	cout << "栈的大小为:" << s.size() << endl;

}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 入栈 --- push

  • 出栈 --- pop

  • 返回栈顶 --- top

  • 判断栈是否为空 --- empty

  • 返回栈大小 --- size

 

 

 

 

 

3.6 queue(队列)

3.6.1 queue 基本概念

 

概念:Queue是一种先进先出(First In First Out,FIFO)的数据结构,它有两个出口

 

 

 

说明: 2015-11-15_214429

队列容器允许从一端新增元素,从另一端移除元素

队列中只有队头和队尾才可以被外界使用,因此队列不允许有遍历行为

队列中进数据称为 --- 入队 push

队列中出数据称为 --- 出队 pop

 

生活中的队列:

1547606785041

 

 

 

3.6.2 queue 常用接口

 

功能描述:栈容器常用的对外接口

 

构造函数:

  • queue<T> que; //queue采用模板类实现,queue对象的默认构造形式

  • queue(const queue &que); //拷贝构造函数

赋值操作:

  • queue& operator=(const queue &que); //重载等号操作符

数据存取:

  • push(elem); //往队尾添加元素

  • pop(); //从队头移除第一个元素

  • back(); //返回最后一个元素

  • front(); //返回第一个元素

大小操作:

  • empty(); //判断堆栈是否为空

  • size(); //返回栈的大小

 

示例:

#include <queue>
#include <string>
class Person
{
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}

	string m_Name;
	int m_Age;
};

void test01() {

	//创建队列
	queue<Person> q;

	//准备数据
	Person p1("唐僧", 30);
	Person p2("孙悟空", 1000);
	Person p3("猪八戒", 900);
	Person p4("沙僧", 800);

	//向队列中添加元素  入队操作
	q.push(p1);
	q.push(p2);
	q.push(p3);
	q.push(p4);

	//队列不提供迭代器,更不支持随机访问	
	while (!q.empty()) {
		//输出队头元素
		cout << "队头元素-- 姓名: " << q.front().m_Name 
              << " 年龄: "<< q.front().m_Age << endl;
        
		cout << "队尾元素-- 姓名: " << q.back().m_Name  
              << " 年龄: " << q.back().m_Age << endl;
        
		cout << endl;
		//弹出队头元素
		q.pop();
	}

	cout << "队列大小为:" << q.size() << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 入队 --- push

  • 出队 --- pop

  • 返回队头元素 --- front

  • 返回队尾元素 --- back

  • 判断队是否为空 --- empty

  • 返回队列大小 --- size

 

 

 

 

 

 

 

3.7 list(链表)

3.7.1 list基本概念

 

功能:将数据进行链式存储

链表(list)是一种物理存储单元上非连续的存储结构,数据元素的逻辑顺序是通过链表中的指针链接实现的

 

链表的组成:链表由一系列结点组成

 

结点的组成:一个是存储数据元素的数据域,另一个是存储下一个结点地址的指针域

 

STL中的链表是一个双向循环链表

 

说明: 2015-11-15_225145

由于链表的存储方式并不是连续的内存空间,因此链表list中的迭代器只支持前移和后移,属于双向迭代器

 

list的优点:

  • 采用动态存储分配,不会造成内存浪费和溢出

  • 链表执行插入和删除操作十分方便,修改指针即可,不需要移动大量元素

list的缺点:

  • 链表灵活,但是空间(指针域) 和 时间(遍历)额外耗费较大

 

List有一个重要的性质,插入操作和删除操作都不会造成原有list迭代器的失效,这在vector是不成立的。

 

总结:STL中List和vector是两个最常被使用的容器,各有优缺点

 

 

3.7.2 list构造函数

功能描述:

  • 创建list容器

 

函数原型:

  • list<T> lst; //list采用采用模板类实现,对象的默认构造形式:

  • list(beg,end); //构造函数将[beg, end)区间中的元素拷贝给本身。

  • list(n,elem); //构造函数将n个elem拷贝给本身。

  • list(const list &lst); //拷贝构造函数。

 

 

示例:

#include <list>

void printList(const list<int>& L) {

	for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

void test01()
{
	list<int>L1;
	L1.push_back(10);
	L1.push_back(20);
	L1.push_back(30);
	L1.push_back(40);

	printList(L1);

	list<int>L2(L1.begin(),L1.end());
	printList(L2);

	list<int>L3(L2);
	printList(L3);

	list<int>L4(10, 1000);
	printList(L4);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:list构造方式同其他几个STL常用容器,熟练掌握即可

 

 

 

 

 

 

3.7.3 list 赋值和交换

功能描述:

  • 给list容器进行赋值,以及交换list容器

函数原型:

  • assign(beg, end); //将[beg, end)区间中的数据拷贝赋值给本身。

  • assign(n, elem); //将n个elem拷贝赋值给本身。

  • list& operator=(const list &lst); //重载等号操作符

  • swap(lst); //将lst与本身的元素互换。

 

示例:

#include <list>

void printList(const list<int>& L) {

	for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

//赋值和交换
void test01()
{
	list<int>L1;
	L1.push_back(10);
	L1.push_back(20);
	L1.push_back(30);
	L1.push_back(40);
	printList(L1);

	//赋值
	list<int>L2;
	L2 = L1;
	printList(L2);

	list<int>L3;
	L3.assign(L2.begin(), L2.end());
	printList(L3);

	list<int>L4;
	L4.assign(10, 100);
	printList(L4);

}

//交换
void test02()
{

	list<int>L1;
	L1.push_back(10);
	L1.push_back(20);
	L1.push_back(30);
	L1.push_back(40);

	list<int>L2;
	L2.assign(10, 100);

	cout << "交换前: " << endl;
	printList(L1);
	printList(L2);

	cout << endl;

	L1.swap(L2);

	cout << "交换后: " << endl;
	printList(L1);
	printList(L2);

}

int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}

总结:list赋值和交换操作能够灵活运用即可

 

 

 

 

 

 

 

3.7.4 list 大小操作

功能描述:

  • 对list容器的大小进行操作

 

函数原型:

  • size(); //返回容器中元素的个数

  • empty(); //判断容器是否为空

  • resize(num); //重新指定容器的长度为num,若容器变长,则以默认值填充新位置。

    //如果容器变短,则末尾超出容器长度的元素被删除。

  • resize(num, elem); //重新指定容器的长度为num,若容器变长,则以elem值填充新位置。

    					    //如果容器变短,则末尾超出容器长度的元素被删除。

 

示例:

#include <list>

void printList(const list<int>& L) {

	for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

//大小操作
void test01()
{
	list<int>L1;
	L1.push_back(10);
	L1.push_back(20);
	L1.push_back(30);
	L1.push_back(40);

	if (L1.empty())
	{
		cout << "L1为空" << endl;
	}
	else
	{
		cout << "L1不为空" << endl;
		cout << "L1的大小为: " << L1.size() << endl;
	}

	//重新指定大小
	L1.resize(10);
	printList(L1);

	L1.resize(2);
	printList(L1);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 判断是否为空 --- empty

  • 返回元素个数 --- size

  • 重新指定个数 --- resize

 

 

 

 

 

3.7.5 list 插入和删除

功能描述:

  • 对list容器进行数据的插入和删除

 

函数原型:

  • push_back(elem);//在容器尾部加入一个元素

  • pop_back();//删除容器中最后一个元素

  • push_front(elem);//在容器开头插入一个元素

  • pop_front();//从容器开头移除第一个元素

  • insert(pos,elem);//在pos位置插elem元素的拷贝,返回新数据的位置。

  • insert(pos,n,elem);//在pos位置插入n个elem数据,无返回值。

  • insert(pos,beg,end);//在pos位置插入[beg,end)区间的数据,无返回值。

  • clear();//移除容器的所有数据

  • erase(beg,end);//删除[beg,end)区间的数据,返回下一个数据的位置。

  • erase(pos);//删除pos位置的数据,返回下一个数据的位置。

  • remove(elem);//删除容器中所有与elem值匹配的元素。

 

 

示例:

#include <list>

void printList(const list<int>& L) {

	for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

//插入和删除
void test01()
{
	list<int> L;
	//尾插
	L.push_back(10);
	L.push_back(20);
	L.push_back(30);
	//头插
	L.push_front(100);
	L.push_front(200);
	L.push_front(300);

	printList(L);

	//尾删
	L.pop_back();
	printList(L);

	//头删
	L.pop_front();
	printList(L);

	//插入
	list<int>::iterator it = L.begin();
	L.insert(++it, 1000);
	printList(L);

	//删除
	it = L.begin();
	L.erase(++it);
	printList(L);

	//移除
	L.push_back(10000);
	L.push_back(10000);
	L.push_back(10000);
	printList(L);
	L.remove(10000);
	printList(L);
    
    //清空
	L.clear();
	printList(L);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 尾插 --- push_back

  • 尾删 --- pop_back

  • 头插 --- push_front

  • 头删 --- pop_front

  • 插入 --- insert

  • 删除 --- erase

  • 移除 --- remove

  • 清空 --- clear

 

 

 

 

 

 

 

 

3.7.6 list 数据存取

功能描述:

  • 对list容器中数据进行存取

 

函数原型:

  • front(); //返回第一个元素。

  • back(); //返回最后一个元素。

 

 

示例:

#include <list>

//数据存取
void test01()
{
	list<int>L1;
	L1.push_back(10);
	L1.push_back(20);
	L1.push_back(30);
	L1.push_back(40);

	
	//cout << L1.at(0) << endl;//错误 不支持at访问数据
	//cout << L1[0] << endl; //错误  不支持[]方式访问数据
	cout << "第一个元素为: " << L1.front() << endl;
	cout << "最后一个元素为: " << L1.back() << endl;

	//list容器的迭代器是双向迭代器,不支持随机访问
	list<int>::iterator it = L1.begin();
	//it = it + 1;//错误,不可以跳跃访问,即使是+1
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • list容器中不可以通过[]或者at方式访问数据

  • 返回第一个元素 --- front

  • 返回最后一个元素 --- back

 

 

 

 

 

3.7.7 list 反转和排序

功能描述:

  • 将容器中的元素反转,以及将容器中的数据进行排序

 

函数原型:

  • reverse(); //反转链表

  • sort(); //链表排序

 

 

示例:

void printList(const list<int>& L) {

	for (list<int>::const_iterator it = L.begin(); it != L.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

bool myCompare(int val1 , int val2)
{
	return val1 > val2;
}

//反转和排序
void test01()
{
	list<int> L;
	L.push_back(90);
	L.push_back(30);
	L.push_back(20);
	L.push_back(70);
	printList(L);

	//反转容器的元素
	L.reverse();
	printList(L);

	//排序
	L.sort(); //默认的排序规则 从小到大
	printList(L);

	L.sort(myCompare); //指定规则,从大到小
	printList(L);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 反转 --- reverse

  • 排序 --- sort (成员函数)

 

 

 

 

 

3.7.8 排序案例

案例描述:将Person自定义数据类型进行排序,Person中属性有姓名、年龄、身高

排序规则:按照年龄进行升序,如果年龄相同按照身高进行降序

 

示例:

#include <list>
#include <string>
class Person {
public:
	Person(string name, int age , int height) {
		m_Name = name;
		m_Age = age;
		m_Height = height;
	}

public:
	string m_Name;  //姓名
	int m_Age;      //年龄
	int m_Height;   //身高
};


bool ComparePerson(Person& p1, Person& p2) {

	if (p1.m_Age == p2.m_Age) {
		return p1.m_Height  > p2.m_Height;
	}
	else
	{
		return  p1.m_Age < p2.m_Age;
	}

}

void test01() {

	list<Person> L;

	Person p1("刘备", 35 , 175);
	Person p2("曹操", 45 , 180);
	Person p3("孙权", 40 , 170);
	Person p4("赵云", 25 , 190);
	Person p5("张飞", 35 , 160);
	Person p6("关羽", 35 , 200);

	L.push_back(p1);
	L.push_back(p2);
	L.push_back(p3);
	L.push_back(p4);
	L.push_back(p5);
	L.push_back(p6);

	for (list<Person>::iterator it = L.begin(); it != L.end(); it++) {
		cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age 
              << " 身高: " << it->m_Height << endl;
	}

	cout << "---------------------------------" << endl;
	L.sort(ComparePerson); //排序

	for (list<Person>::iterator it = L.begin(); it != L.end(); it++) {
		cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age 
              << " 身高: " << it->m_Height << endl;
	}
}

int main() {

	test01();

	system("pause");

	return 0;
}

 

总结:

  • 对于自定义数据类型,必须要指定排序规则,否则编译器不知道如何进行排序

  • 高级排序只是在排序规则上再进行一次逻辑规则制定,并不复杂

 

 

 

 

 

 

 

 

 

3.8 set/ multiset(集合)

3.8.1 set基本概念

简介:

  • 所有元素都会在插入时自动被排序

 

 

本质:

  • set/multiset属于关联式容器,底层结构是用二叉树实现。

 

 

set和multiset区别

  • set不允许容器中有重复的元素

  • multiset允许容器中有重复的元素

 

 

3.8.2 set构造和赋值

功能描述:创建set容器以及赋值

 

构造:

  • set<T> st; //默认构造函数:

  • set(const set &st); //拷贝构造函数

赋值:

  • set& operator=(const set &st); //重载等号操作符

 

示例:

#include <set>

void printSet(set<int> & s)
{
	for (set<int>::iterator it = s.begin(); it != s.end(); it++)
	{
		cout << *it << " ";
	}
	cout << endl;
}

//构造和赋值
void test01()
{
	set<int> s1;

	s1.insert(10);
	s1.insert(30);
	s1.insert(20);
	s1.insert(40);
	printSet(s1);

	//拷贝构造
	set<int>s2(s1);
	printSet(s2);

	//赋值
	set<int>s3;
	s3 = s2;
	printSet(s3);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • set容器插入数据时用insert

  • set容器插入数据的数据会自动排序

 

 

 

 

 

3.8.3 set大小和交换

功能描述:

  • 统计set容器大小以及交换set容器

 

函数原型:

  • size(); //返回容器中元素的数目

  • empty(); //判断容器是否为空

  • swap(st); //交换两个集合容器

 

示例:

#include <set>

void printSet(set<int> & s)
{
	for (set<int>::iterator it = s.begin(); it != s.end(); it++)
	{
		cout << *it << " ";
	}
	cout << endl;
}

//大小
void test01()
{

	set<int> s1;
	
	s1.insert(10);
	s1.insert(30);
	s1.insert(20);
	s1.insert(40);

	if (s1.empty())
	{
		cout << "s1为空" << endl;
	}
	else
	{
		cout << "s1不为空" << endl;
		cout << "s1的大小为: " << s1.size() << endl;
	}

}

//交换
void test02()
{
	set<int> s1;

	s1.insert(10);
	s1.insert(30);
	s1.insert(20);
	s1.insert(40);

	set<int> s2;

	s2.insert(100);
	s2.insert(300);
	s2.insert(200);
	s2.insert(400);

	cout << "交换前" << endl;
	printSet(s1);
	printSet(s2);
	cout << endl;

	cout << "交换后" << endl;
	s1.swap(s2);
	printSet(s1);
	printSet(s2);
}

int main() {

	//test01();

	test02();

	system("pause");

	return 0;
}

总结:

  • 统计大小 --- size

  • 判断是否为空 --- empty

  • 交换容器 --- swap

 

 

 

 

 

 

 

 

3.8.4 set插入和删除

功能描述:

  • set容器进行插入数据和删除数据

 

 

函数原型:

  • insert(elem); //在容器中插入元素。

  • clear(); //清除所有元素

  • erase(pos); //删除pos迭代器所指的元素,返回下一个元素的迭代器。

  • erase(beg, end); //删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。

  • erase(elem); //删除容器中值为elem的元素。

 

 

示例:

#include <set>

void printSet(set<int> & s)
{
	for (set<int>::iterator it = s.begin(); it != s.end(); it++)
	{
		cout << *it << " ";
	}
	cout << endl;
}

//插入和删除
void test01()
{
	set<int> s1;
	//插入
	s1.insert(10);
	s1.insert(30);
	s1.insert(20);
	s1.insert(40);
	printSet(s1);

	//删除
	s1.erase(s1.begin());
	printSet(s1);

	s1.erase(30);
	printSet(s1);

	//清空
	//s1.erase(s1.begin(), s1.end());
	s1.clear();
	printSet(s1);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 插入 --- insert

  • 删除 --- erase

  • 清空 --- clear

 

 

 

 

 

3.8.5 set查找和统计

功能描述:

  • 对set容器进行查找数据以及统计数据

 

函数原型:

  • find(key); //查找key是否存在,若存在,返回该键的元素的迭代器;若不存在,返回set.end();

  • count(key); //统计key的元素个数

 

 

示例:

#include <set>

//查找和统计
void test01()
{
	set<int> s1;
	//插入
	s1.insert(10);
	s1.insert(30);
	s1.insert(20);
	s1.insert(40);
	
	//查找
	set<int>::iterator pos = s1.find(30);

	if (pos != s1.end())
	{
		cout << "找到了元素 : " << *pos << endl;
	}
	else
	{
		cout << "未找到元素" << endl;
	}

	//统计
	int num = s1.count(30);
	cout << "num = " << num << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 查找 --- find (返回的是迭代器)

  • 统计 --- count (对于set,结果为0或者1)

 

 

 

 

 

 

 

 

3.8.6 set和multiset区别

学习目标:

  • 掌握set和multiset的区别

 

区别:

  • set不可以插入重复数据,而multiset可以

  • set插入数据的同时会返回插入结果,表示插入是否成功

  • multiset不会检测数据,因此可以插入重复数据

 

 

示例:

#include <set>

//set和multiset区别
void test01()
{
	set<int> s;
	pair<set<int>::iterator, bool>  ret = s.insert(10);
	if (ret.second) {
		cout << "第一次插入成功!" << endl;
	}
	else {
		cout << "第一次插入失败!" << endl;
	}

	ret = s.insert(10);
	if (ret.second) {
		cout << "第二次插入成功!" << endl;
	}
	else {
		cout << "第二次插入失败!" << endl;
	}
    
	//multiset
	multiset<int> ms;
	ms.insert(10);
	ms.insert(10);

	for (multiset<int>::iterator it = ms.begin(); it != ms.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 如果不允许插入重复数据可以利用set

  • 如果需要插入重复数据利用multiset

 

 

3.8.7 set容器排序

学习目标:

  • set容器默认排序规则为从小到大,掌握如何改变排序规则

 

主要技术点:

  • 利用仿函数,可以改变排序规则

 

 

示例一 set存放内置数据类型

#include <set>

class MyCompare 
{
public:
	bool operator()(int v1, int v2) {
		return v1 > v2;
	}
};
void test01() 
{    
	set<int> s1;
	s1.insert(10);
	s1.insert(40);
	s1.insert(20);
	s1.insert(30);
	s1.insert(50);

	//默认从小到大
	for (set<int>::iterator it = s1.begin(); it != s1.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;

	//指定排序规则
	set<int,MyCompare> s2;
	s2.insert(10);
	s2.insert(40);
	s2.insert(20);
	s2.insert(30);
	s2.insert(50);

	for (set<int, MyCompare>::iterator it = s2.begin(); it != s2.end(); it++) {
		cout << *it << " ";
	}
	cout << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:利用仿函数可以指定set容器的排序规则

 

示例二 set存放自定义数据类型

#include <set>
#include <string>

class Person
{
public:
	Person(string name, int age)
	{
		this->m_Name = name;
		this->m_Age = age;
	}

	string m_Name;
	int m_Age;

};
class comparePerson
{
public:
	bool operator()(const Person& p1, const Person &p2)
	{
		//按照年龄进行排序  降序
		return p1.m_Age > p2.m_Age;
	}
};

void test01()
{
	set<Person, comparePerson> s;

	Person p1("刘备", 23);
	Person p2("关羽", 27);
	Person p3("张飞", 25);
	Person p4("赵云", 21);

	s.insert(p1);
	s.insert(p2);
	s.insert(p3);
	s.insert(p4);

	for (set<Person, comparePerson>::iterator it = s.begin(); it != s.end(); it++)
	{
		cout << "姓名: " << it->m_Name << " 年龄: " << it->m_Age << endl;
	}
}
int main() {

	test01();

	system("pause");

	return 0;
}

总结:

对于自定义数据类型,set必须指定排序规则才可以插入数据

 

 

 

3.9 map/ multimap(映射)

3.9.1 map基本概念

简介:

  • map中所有元素都是pair

  • pair中第一个元素为key(键值),起到索引作用,第二个元素为value(实值)

  • 所有元素都会根据元素的键值自动排序

 

本质:

  • map/multimap属于关联式容器,底层结构是用二叉树实现。

 

优点:

  • 可以根据key值快速找到value值

 

map和multimap区别

  • map不允许容器中有重复key值元素

  • multimap允许容器中有重复key值元素

 

3.9.2 map构造和赋值

功能描述:

  • 对map容器进行构造和赋值操作

函数原型:

构造:

  • map<T1, T2> mp; //map默认构造函数:

  • map(const map &mp); //拷贝构造函数

 

赋值:

  • map& operator=(const map &mp); //重载等号操作符

 

示例:

#include <map>

void printMap(map<int,int>&m)
{
	for (map<int, int>::iterator it = m.begin(); it != m.end(); it++)
	{
		cout << "key = " << it->first << " value = " << it->second << endl;
	}
	cout << endl;
}

void test01()
{
	map<int,int>m; //默认构造
	m.insert(pair<int, int>(1, 10));
	m.insert(pair<int, int>(2, 20));
	m.insert(pair<int, int>(3, 30));
	printMap(m);

	map<int, int>m2(m); //拷贝构造
	printMap(m2);

	map<int, int>m3;
	m3 = m2; //赋值
	printMap(m3);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:map中所有元素都是成对出现,插入数据时候要使用对组

 

 

 

 

 

3.9.3 map大小和交换

功能描述:

  • 统计map容器大小以及交换map容器

 

 

函数原型:

  • size(); //返回容器中元素的数目

  • empty(); //判断容器是否为空

  • swap(st); //交换两个集合容器

 

 

示例:

#include <map>

void printMap(map<int,int>&m)
{
	for (map<int, int>::iterator it = m.begin(); it != m.end(); it++)
	{
		cout << "key = " << it->first << " value = " << it->second << endl;
	}
	cout << endl;
}

void test01()
{
	map<int, int>m;
	m.insert(pair<int, int>(1, 10));
	m.insert(pair<int, int>(2, 20));
	m.insert(pair<int, int>(3, 30));

	if (m.empty())
	{
		cout << "m为空" << endl;
	}
	else
	{
		cout << "m不为空" << endl;
		cout << "m的大小为: " << m.size() << endl;
	}
}


//交换
void test02()
{
	map<int, int>m;
	m.insert(pair<int, int>(1, 10));
	m.insert(pair<int, int>(2, 20));
	m.insert(pair<int, int>(3, 30));

	map<int, int>m2;
	m2.insert(pair<int, int>(4, 100));
	m2.insert(pair<int, int>(5, 200));
	m2.insert(pair<int, int>(6, 300));

	cout << "交换前" << endl;
	printMap(m);
	printMap(m2);

	cout << "交换后" << endl;
	m.swap(m2);
	printMap(m);
	printMap(m2);
}

int main() {

	test01();

	test02();

	system("pause");

	return 0;
}

总结:

  • 统计大小 --- size

  • 判断是否为空 --- empty

  • 交换容器 --- swap

 

 

 

 

 

3.9.4 map插入和删除

功能描述:

  • map容器进行插入数据和删除数据

 

 

函数原型:

  • insert(elem); //在容器中插入元素。

  • clear(); //清除所有元素

  • erase(pos); //删除pos迭代器所指的元素,返回下一个元素的迭代器。

  • erase(beg, end); //删除区间[beg,end)的所有元素 ,返回下一个元素的迭代器。

  • erase(key); //删除容器中值为key的元素。

 

示例:

#include <map>

void printMap(map<int,int>&m)
{
	for (map<int, int>::iterator it = m.begin(); it != m.end(); it++)
	{
		cout << "key = " << it->first << " value = " << it->second << endl;
	}
	cout << endl;
}

void test01()
{
	//插入
	map<int, int> m;
	//第一种插入方式
	m.insert(pair<int, int>(1, 10));
	//第二种插入方式
	m.insert(make_pair(2, 20));
	//第三种插入方式
	m.insert(map<int, int>::value_type(3, 30));
	//第四种插入方式
	m[4] = 40; 
	printMap(m);

	//删除
	m.erase(m.begin());
	printMap(m);

	m.erase(3);
	printMap(m);

	//清空
	m.erase(m.begin(),m.end());
	m.clear();
	printMap(m);
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • map插入方式很多,记住其一即可

  • 插入 --- insert

  • 删除 --- erase

  • 清空 --- clear

 

 

 

 

 

 

3.9.5 map查找和统计

功能描述:

  • 对map容器进行查找数据以及统计数据

 

函数原型:

  • find(key); //查找key是否存在,若存在,返回该键的元素的迭代器;若不存在,返回set.end();

  • count(key); //统计key的元素个数

 

示例:

#include <map>

//查找和统计
void test01()
{
	map<int, int>m; 
	m.insert(pair<int, int>(1, 10));
	m.insert(pair<int, int>(2, 20));
	m.insert(pair<int, int>(3, 30));

	//查找
	map<int, int>::iterator pos = m.find(3);

	if (pos != m.end())
	{
		cout << "找到了元素 key = " << (*pos).first << " value = " << (*pos).second << endl;
	}
	else
	{
		cout << "未找到元素" << endl;
	}

	//统计
	int num = m.count(3);
	cout << "num = " << num << endl;
}

int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 查找 --- find (返回的是迭代器)

  • 统计 --- count (对于map,结果为0或者1)

 

 

 

 

 

 

 

3.9.6 map容器排序

学习目标:

  • map容器默认排序规则为 按照key值进行 从小到大排序,掌握如何改变排序规则

 

 

主要技术点:

  • 利用仿函数,可以改变排序规则

 

 

示例:

#include <map>

class MyCompare {
public:
	bool operator()(int v1, int v2) {
		return v1 > v2;
	}
};

void test01() 
{
	//默认从小到大排序
	//利用仿函数实现从大到小排序
	map<int, int, MyCompare> m;

	m.insert(make_pair(1, 10));
	m.insert(make_pair(2, 20));
	m.insert(make_pair(3, 30));
	m.insert(make_pair(4, 40));
	m.insert(make_pair(5, 50));

	for (map<int, int, MyCompare>::iterator it = m.begin(); it != m.end(); it++) {
		cout << "key:" << it->first << " value:" << it->second << endl;
	}
}
int main() {

	test01();

	system("pause");

	return 0;
}

总结:

  • 利用仿函数可以指定map容器的排序规则

  • 对于自定义数据类型,map必须要指定排序规则,同set容器

 

 

 

 

 

 

3.10 案例-员工分组

3.10.1 案例描述

  • 公司今天招聘了10个员工(ABCDEFGHIJ),10名员工进入公司之后,需要指派员工在那个部门工作

  • 员工信息有: 姓名 工资组成;部门分为:策划、美术、研发

  • 随机给10名员工分配部门和工资

  • 通过multimap进行信息的插入 key(部门编号) value(员工)

  • 分部门显示员工信息

 

 

3.10.2 实现步骤

  1. 创建10名员工,放到vector中

  2. 遍历vector容器,取出每个员工,进行随机分组

  3. 分组后,将员工部门编号作为key,具体员工作为value,放入到multimap容器中

  4. 分部门显示员工信息

 

 

案例代码:

#include<iostream>
using namespace std;
#include <vector>
#include <string>
#include <map>
#include <ctime>

/*
- 公司今天招聘了10个员工(ABCDEFGHIJ),10名员工进入公司之后,需要指派员工在那个部门工作
- 员工信息有: 姓名  工资组成;部门分为:策划、美术、研发
- 随机给10名员工分配部门和工资
- 通过multimap进行信息的插入  key(部门编号) value(员工)
- 分部门显示员工信息
*/

#define CEHUA  0
#define MEISHU 1
#define YANFA  2

class Worker
{
public:
	string m_Name;
	int m_Salary;
};

void createWorker(vector<Worker>&v)
{
	string nameSeed = "ABCDEFGHIJ";
	for (int i = 0; i < 10; i++)
	{
		Worker worker;
		worker.m_Name = "员工";
		worker.m_Name += nameSeed[i];

		worker.m_Salary = rand() % 10000 + 10000; // 10000 ~ 19999
		//将员工放入到容器中
		v.push_back(worker);
	}
}

//员工分组
void setGroup(vector<Worker>&v,multimap<int,Worker>&m)
{
	for (vector<Worker>::iterator it = v.begin(); it != v.end(); it++)
	{
		//产生随机部门编号
		int deptId = rand() % 3; // 0 1 2 

		//将员工插入到分组中
		//key部门编号,value具体员工
		m.insert(make_pair(deptId, *it));
	}
}

void showWorkerByGourp(multimap<int,Worker>&m)
{
	// 0  A  B  C   1  D  E   2  F G ...
	cout << "策划部门:" << endl;

	multimap<int,Worker>::iterator pos = m.find(CEHUA);
	int count = m.count(CEHUA); // 统计具体人数
	int index = 0;
	for (; pos != m.end() && index < count; pos++ , index++)
	{
		cout << "姓名: " << pos->second.m_Name << " 工资: " << pos->second.m_Salary << endl;
	}

	cout << "----------------------" << endl;
	cout << "美术部门: " << endl;
	pos = m.find(MEISHU);
	count = m.count(MEISHU); // 统计具体人数
	index = 0;
	for (; pos != m.end() && index < count; pos++, index++)
	{
		cout << "姓名: " << pos->second.m_Name << " 工资: " << pos->second.m_Salary << endl;
	}

	cout << "----------------------" << endl;
	cout << "研发部门: " << endl;
	pos = m.find(YANFA);
	count = m.count(YANFA); // 统计具体人数
	index = 0;
	for (; pos != m.end() && index < count; pos++, index++)
	{
		cout << "姓名: " << pos->second.m_Name << " 工资: " << pos->second.m_Salary << endl;
	}

}

int main() {

	srand((unsigned int)time(NULL));

	//1、创建员工
	vector<Worker>vWorker;
	createWorker(vWorker);

	//2、员工分组
	multimap<int, Worker>mWorker;
	setGroup(vWorker, mWorker);


	//3、分组显示员工
	showWorkerByGourp(mWorker);

	////测试
	//for (vector<Worker>::iterator it = vWorker.begin(); it != vWorker.end(); it++)
	//{
	//	cout << "姓名: " << it->m_Name << " 工资: " << it->m_Salary << endl;
	//}

	system("pause");

	return 0;
}

总结:

  • 当数据以键值对形式存在,可以考虑用map 或 multimap

 

 

 

 

 

3.11 pair

3.11.1 pair基本概念

pair是将2个数据组合成一组数据,当需要这样的需求时就可以使用pair,如stl中的map就是将key和value放在一起来保存。另一个应用是,当一个函数需要返回2个数据的时候,可以选择pair。 pair的实现是一个结构体,主要的两个成员变量是first second 因为是使用struct不是class,所以可以直接使用pair的成员变量。

其标准库类型--pair类型定义在#include <utility>头文件中,定义如下:

类模板:template<class T1,class T2> struct pair

参数:T1是第一个值的数据类型,T2是第二个值的数据类型。

功能:pair将一对值(T1和T2)组合成一个值,

        这一对值可以具有不同的数据类型(T1和T2),

        两个值可以分别用pair的两个公有函数first和second访问。

定义(构造函数):

pair<T1, T2> p1;            //创建一个空的pair对象(使用默认构造),它的两个元素分别是T1和T2类型,采用值初始化。
pair<T1, T2> p1(v1, v2);    //创建一个pair对象,它的两个元素分别是T1和T2类型,其中first成员初始化为v1,second成员初始化为v2。
make_pair(v1, v2);          // 以v1和v2的值创建一个新的pair对象,其元素类型分别是v1和v2的类型。
p1 < p2;                    // 两个pair对象间的小于运算,其定义遵循字典次序:如 p1.first < p2.first 或者 !(p2.first < p1.first) && (p1.second < p2.second) 则返回true。
p1 == p2;                  // 如果两个对象的first和second依次相等,则这两个对象相等;该运算使用元素的==操作符。
p1.first;                   // 返回对象p1中名为first的公有数据成员
p1.second;                 // 返回对象p1中名为second的公有数据成员

 

3.11.2 pair的创建和初始化

pair包含两个数值,与容器一样,pair也是一种模板类型。但是又与之前介绍的容器不同;

在创建pair对象时,必须提供两个类型名,两个对应的类型名的类型不必相同

pair<string, string> anon;        // 创建一个空对象anon,两个元素类型都是string
pair<string, int> word_count;     // 创建一个空对象 word_count, 两个元素类型分别是string和int类型
pair<string, vector<int> > line;  // 创建一个空对象line,两个元素类型分别是string和vector类型


当然也可以在定义时进行成员初始化:

pair<string, string> author("James","Joy");    // 创建一个author对象,两个元素类型分别为string类型,并默认初始值为James和Joy。
pair<string, int> name_age("Tom", 18);
pair<string, int> name_age2(name_age);    // 拷贝构造初始化


pair类型的使用相当的繁琐,如果定义多个相同的pair类型对象,可以使用typedef简化声明:

typedef pair<string,string> Author;
Author proust("March","Proust");
Author Joy("James","Joy");


变量间赋值:

pair<int, double> p1(1, 1.2);
pair<int, double> p2 = p1;     // copy construction to initialize object
pair<int, double> p3;
p3 = p1;    // operator =

 

3.11.3 pair对象的操作

访问两个元素操作可以通过first和second访问:

pair<int ,double> p1;
 
p1.first = 1;
 
p1.second = 2.5;
 
cout<<p1.first<<' '<<p1.second<<endl;//输出结果:1 2.5

 

3.11.4 生成新的pair对象

还可以利用make_pair创建新的pair对象:

pair<int, double> p1;
 p1 = make_pair(1, 1.2);
 
cout << p1.first << p1.second << endl;
 
//output: 1 1.2
 
int a = 8;
 
string m = "James";
 
pair<int, string> newone;
 
newone = make_pair(a, m);
cout << newone.first << newone.second << endl;
 
//output: 8 James

 

3.11.5 通过tie获取pair元素值

在某些清况函数会以pair对象作为返回值时,可以直接通过std::tie进行接收。比如:

std::pair<std::string, int> getPreson() {
    return std::make_pair("Sven", 25);
}
 
int main(int argc, char **argv) {
    std::string name;
    int ages;
 
    std::tie(name, ages) = getPreson();
 
    std::cout << "name: " << name << ", ages: " << ages << std::endl;
 
    return 0;
}