基于复杂地形的四足机器人路径规划算法研究

发布时间 2023-07-03 09:34:01作者: freedragon
基于复杂地形的四足机器人路径规划算法研究
马希青, 王金义
河北工程大学机械与装备工程学院, 河北邯郸 056038
 
Research on Path Planning Algorithm of Quadruped Robot Based on Complex Terrain
MA Xiqing, WANG Jinyi
School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan Hebei 056038, China
 
全文: PDF(1353 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 针对四足机器人在复杂环境中摆动腿路径点规划不准确的问题,提出一种基于摆动腿路径规划的样条优化算法。该算法运用零力矩点(ZMP)稳定性准则,在对机器人COG轨迹进行规划的基础上,对机器人摆动腿足端轨迹路径点进行优化计算,并利用ADAMS建立其仿真模型用于计算机仿真。结果表明:该算法不仅能保证四足机器人安全避障,且能实现在复杂地形条件下平稳行走,验证了该算法的准确性和鲁棒性。
 
  服务
 
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
  作者相关文章
马希青
王金义
 
关键词 : 四足机器人,  复杂环境,  稳定性,  轨迹规划算法    
Abstract:In order to solve the problem of inaccuracy of path point planning of quadruped robot swing leg in a complex environment, a spline optimization algorithm based on swing leg path planning was proposed. In this algorithm, the zero moment point(ZMP) stability criterion was used, the path points of the foot end trajectory of the robot swing leg were optimized on the basis of planning the COG trajectory of the robot, and the simulation model was established by using ADAMS for computer simulation. The results show that by using this algorithm, not only the safety of the quadruped robot to avoid obstacles can be ensured, but also the smooth walking under complex terrain conditions can be realized, the accuracy and robustness of the proposed algorithm are verified.
Key words: Quadruped robot    Complex environment    Stability    Trajectory planning algorithm
收稿日期: 2020-09-21      出版日期: 2022-10-17
ZTFLH:  TP242.6  
基金资助:河北省科学技术研究与发展计划项目(19211815D)
通讯作者: 王金义(1994-),男,硕士,研究方向为计算机仿真、智能机器人技术。E-mail:1360894242@qq.com。     E-mail: 1360894242@qq.com
作者简介: 马希青(1963-),男,硕士,教授,主要研究方向为计算机仿真、智能机器人技术。E-mail:jixiecad@hebeu.edu.cn
引用本文:   
马希青, 王金义. 基于复杂地形的四足机器人路径规划算法研究[J]. 机床与液压, 2021, 49(23): 30-34.
MA Xiqing, WANG Jinyi. Research on Path Planning Algorithm of Quadruped Robot Based on Complex Terrain. Machine Tool & Hydraulics, 2021, 49(23): 30-34.
 
 
 
链接本文:  
http://qikan.cmes.org/jcyyy/CN/10.3969/j.issn.1001-3881.2021.23.006      或      http://qikan.cmes.org/jcyyy/CN/Y2021/V49/I23/30
[1] 何玉东,王军政,柯贤锋,等.足式机器人的稳定行走[J].2016,52(21):1-7.HE Y D,WANG J Z,KE X F,et al.Stable walking for legged robots[J].Journal of Mechanical Engineering,2016,52(21):1-7.
[2] 王洪斌,郝策,张平,等.基于A*算法和人工势场法的移动机器人路径规划[J].中国机械工程,2019,30(20):2489-2496.WANG H B,HAO C,ZHANG P,et al.Path planning of mobile robots based on A*algorithm and artificial potential field algorithm[J].China Mechanical Engineering,2019,30(20):2489-2496.
[3] AJALLOOEIAN M,GAY S,TULEU A,et al.Modular control of limit cycle locomotion over unperceived rough terrain[C]//Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.Tokyo,Japan:IEEE,2013:3390-3397.
[4] BAI S P,LOW K H,SEET G,et al.A new free gait generation for quadrupeds based on primary/secondary gait[C]//Proceedings of 1999 IEEE International Conference on Robotics and Automation.Detroit,MI,USA:IEEE,1999:1371-1376.
[5] 王恒升,邹铁庚.四足机器人躯干重心稳定的变步长行走研究[J].计算机仿真,2014,31(12):339-345.WANG H S,ZOU T G.Study on quadruped robot walking with adaptive step-size and stable center of gravity[J].Computer Simulation,2014,31(12):339-345.
[6] 刘冠初,熊静琪,乔林,等.四足机器人自由步态规划建模与算法实现[J].西安交通大学学报,2015,49(6):84-89.LIU G C,XIONG J Q,QIAO L,et al.Modelling and algorithm realization of free gait regulation for quadruped robots[J].Journal of Xi'an Jiaotong University,2015,49(6):84-89.
[7] 封硕,谢廷船,康靖,等.基于双粒子群算法的矿井搜救机器人路径规划[J].工矿自动化,2020,46(1):65-71.FENG S,XIE T C,KANG J,et al.Path planning of mine search and rescue robot based on two-particle swarm optimization algorithm[J].Industry and Mine Automation,2020,46(1):65-71.
[8] HIROSE S,FUKUDA Y,YONEDA K,et al.Quadruped walking robots at Tokyo Institute of Technology[J].IEEERobotics&Automation Magazine,2009,16(2):104-114.
[9] 王新杰,李培根,陈学东,等.四足步行机器人动力学模型及脚力分配的研究[J].华中科技大学学报(自然科学版),2005,33(12):12-15.WANG X J,LI P G,CHEN X D,et al.Dynamic model of quadruped robots and its force distribution[J].Journal of Huazhong University of Science and Technology (Nature Science Edition),2005,33(12):12-15.
[10] 潘欣裕,公维理,王俭,等.移动机器人步长调整算法的S函数应用研究[J].计算机工程与应用,2010,46(4):204-205.PAN X Y,GONG W L,WANG J,et al.Sigmoid function application in variable step-size algorithm for mobile robots[J].Computer Engineering and Applications,2010,46(4):204-205.
[11] VUKOBRATOVID'M,STEPANENKO J.On the stability of anthropomorphic systems[J].Mathematical Biosciences,1972,15(1/2):1-37.
[12] 王立鹏,王军政,赵江波,等.基于零力矩点的四足机器人非平坦地形下步态规划与控制[J].北京理工大学学报,2015,35(6):601-606.WANG L P,WANG J Z,ZHAO J B,et al.Foot trajectory generation and gait control method of a quadruped robot on uneven terrain based on zero moment point theory[J].Transactions of Beijing Institute of Technology,2015,35(6):601-606.
[13] 王鹏飞,黄博,孙立宁.四足仿生机器人稳定性判定方法[J].哈尔滨工业大学学报,2008,40(7):1063-1066.WANG P F,HUANG B,SUN L N.Stability judging method for quadruped bionic robot[J].Journal of Harbin Institute of Technology,2008,40(7):1063-1066.
[1] 朱大昌, 崔翱东, 杜宝林, 盘意华. 基于双模同步预测的机械臂末端轮廓精确跟踪控制[J]. 机床与液压, 2022, 50(3): 21-25.
[2] 杨婧, 熊超, 许红娟. 基于改进新型无源观测器的机器人系统控制研究[J]. 机床与液压, 2022, 50(3): 61-65.
[3] 吴春凌, 周龙, 聂斌. 大应变切削制备的超细晶纯铜切屑热稳定性的研究[J]. 机床与液压, 2022, 50(3): 79-84.
[4] 王昱昊, 吕凯波, 娄培生, 刘一沛, 廉自生. 薄壁筒车削颤振稳定性预测[J]. 机床与液压, 2022, 50(3): 151-156.
[5] 王春峰. 考虑模型不确定和关节电机动态的柔性机械手滑模控制[J]. 机床与液压, 2022, 50(1): 75-81.
[6] 胡仕成, 陈志高, 黎新齐. 高空带电机器人臂架稳定性优化控制仿真研究[J]. 机床与液压, 2021, 49(23): 7-12.
[7] 史磊, 程翔, 梁黎明. 基于H控制策略的机床主轴综合鲁棒控制研究[J]. 机床与液压, 2021, 49(16): 42-45,50.
[8] 崔立, 苏银, 任德余, 徐卫责. 高速圆柱滚子轴承保持架动态性能影响因素分析[J]. 机床与液压, 2021, 49(14): 17-23.
[9] 曾宪君, 黄志涛, 邵家儒, 刘牛, 张月月. 基于SPH方法的罐式贮箱动力响应及稳定性研究[J]. 机床与液压, 2021, 49(14): 24-30,59.
[10] 肖前龙. 导阀结构对先导式比例溢流阀稳定性的影响[J]. 机床与液压, 2021, 49(14): 157-160.
[11] 李绍朋, 王利强, 吕志杰. 外圆车削TC4钛合金颤振稳定性极限预测[J]. 机床与液压, 2021, 49(12): 12-18.
[12] 顾强强, 蒋扇英. 非线性时滞弹性关节机械臂系统稳定性与Hopf分岔[J]. 机床与液压, 2021, 49(11): 12-16,21.
[13] 王晓凯. 比例减压阀压力稳定性测试系统的研制[J]. 机床与液压, 2021, 49(11): 123-126.
[14] 乔晓利, 傅佳伟, 祝长生. 基于模态解耦-状态反馈控制的磁悬浮铣削系统稳定性研究[J]. 机床与液压, 2021, 49(1): 31-37,74.
[15] 杨先威, 陈明, 曹磊, 陈微, 王道. 焊枪末端受扰响应分析及其共振研究[J]. 机床与液压, 2021, 49(1): 160-164,174.