Lattice .bek档案AES加密解密

发布时间 2023-10-24 17:02:10作者: 一米八大高个
//BEK.h
#ifndef __BEK_H__
#define __BEK_H__ #include<stdio.h> #include<stdlib.h> #include<stdbool.h> /////////////////////////////////////////////////////////////////////////// // CRC Tables /////////////////////////////////////////////////////////////////////////// static unsigned short crc_16_table[16] = { 0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401, 0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9C01, 0x8801, 0x4400 }; static char fliptab[] = { 0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB, 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF }; unsigned char bek_content[4096] = {     //bek内容 省略 }; #define blockSize 4 // Macro to find the product of x ({02}) and the argument to xtime modulo {1b} #define xtime(x) ((x<<1) ^ (((x>>7) & 1) * 0x1b)) // Macro to multiply numbers in the Galois Field(2^8) #define Multiply(x,y) (((y & 1) * x) ^ ((y>>1 & 1) * xtime(x)) ^ ((y>>2 & 1) * xtime(xtime(x))) ^ ((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ ((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) char pass_word_l[] = { 0x00,0x00,0x00,0x00,0x00,0x4C,0x41,0x54, 0x54,0x49,0x43,0x45,0x53,0x45,0x4D,0x49 }; // Data orientation D[0:7]. /** * @brief Move data to 0x1000, then check CRC value * @note none * @para none * @ret if CRC value not same, return false * @ if return error, you have to call Bus.Setting_Error_Message(E_UnknowFormat,0,0,0,0); and return * @ ex: * * if(!BEK_CRC_check()) * { * Bus.Setting_Error_Message(E_UnknowFormat,0,0,0,0); * return; * } * * if BEK_CRC_check() return true, it means Security_Key_128bits[] have decrypted content */ bool BEK_CRC_check(); /** * @brief Encrypt data * @note none * @para plaintext * @ret plaintext */ void Encrypt(); /** * @brief Encrypt data * @note none * @para plaintext * @ret encrypted */ void Decrypt(); /** * @brief You have to confrim the flag. If false, please don't program and return/ * @note none * @para none * @ret If BEK file encrypted OK, it will be set to true. */ bool Valid_BEK; //uint8_t tmp_content[1024]; unsigned char Security_Key_128bits[16]; unsigned char tmp_plaintext[128]; unsigned short int get_crc_16(int start, long loc, int n, char *bs ); int rounds; int keyLength; unsigned char plaintext[16], encrypted[16], state[4][4]; unsigned char roundKey[240], Key[32]; int get_SBox_Value(int num); int get_SBox_Inverse(int num); void Expand_Keys(); void Add_Round_Key(int round) ; void Sub_Bytes(); void Inv_Sub_Bytes(); void Shift_Rows(); void Inv_Shift_Rows(); void Mix_Columns(); void Inv_Mix_Columns(); #endif

 BEK.c

#include "BEK.h"


typedef unsigned short          uint16_t;

// Lookup Table for round constant word array
// Contains the values given by x to the power (i-1) being powers of x ({02}) in the field Galois Field (28)
int Rcon[255] =        {
    0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 
    0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 
    0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 
    0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 
    0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 
    0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 
    0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 
    0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 
    0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 
    0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 
    0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 0xc6, 0x97, 0x35, 
    0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 0x61, 0xc2, 0x9f, 
    0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb, 0x8d, 0x01, 0x02, 0x04, 
    0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a, 0x2f, 0x5e, 0xbc, 0x63, 
    0xc6, 0x97, 0x35, 0x6a, 0xd4, 0xb3, 0x7d, 0xfa, 0xef, 0xc5, 0x91, 0x39, 0x72, 0xe4, 0xd3, 0xbd, 
    0x61, 0xc2, 0x9f, 0x25, 0x4a, 0x94, 0x33, 0x66, 0xcc, 0x83, 0x1d, 0x3a, 0x74, 0xe8, 0xcb    };

/*
BEK::BEK()
{
    rounds = 0;
    keyLength = 0;
}

BEK::~BEK();
*/
bool BEK_CRC_check()
{
    rounds = 0;
    keyLength = 0;
    Valid_BEK = false;

    /*************************************/
    /***** Find Pending bit & CRC16*******/
    /*************************************/
    int u,p, find_ = 0;
    
    //Bus.Get_DDR_data( (uint8_t *)&bek_content , 0x0 , 1024 );
    

    for (int i = 0; i < 1024; ++i)
    {
        u = i;
        p = 0;

        for (int j = 0; j < 14; ++j)
        {
            if (bek_content[u++]==0) p++;
        }

        if(p>=14) 
        {
            find_ = i;
            break;
        }
        
    }
    
    //printf("p %X\n\r",p);
    //printf("find %X\n\r",find_);

    uint16_t file_crc16 = 0;

    file_crc16 = bek_content[find_ - 1] | (bek_content[find_ - 2]<<8);

    printf("file_crc16 %04X\n\r",file_crc16);

    uint16_t buffer_crc = 0;

    buffer_crc = get_crc_16(0, 0, find_- 2, bek_content);

    printf("buffer_crc %04X\n\r",buffer_crc);

    if (buffer_crc != file_crc16)
    {
        printf("BEK file not in buffer \n\r");
        return false;
    }

    printf("BEK file in buffer \n\r");
    /*************************************/
    /***** Remove Header *****************/
    /*************************************/
    int check_header_length = 0;
    if ( (bek_content[0]==0xFF) && (bek_content[1]==00) )
    {
        for (int i = 0; i < 1024; ++i)
        {
            if( (bek_content[i]==0x00) && (bek_content[i+1]==0xFF) )
            {check_header_length = i+2;
             printf("BEK file CRC correct \n\r");
             printf("Decrypt file............... \n\r");
             break;}
        }
    }
    else
    {
        printf("BEK file CRC not correct \n\r");
        return false;
    }

    printf("check_header_length %X\n\r",check_header_length);

    unsigned char leave_encrypted_data[128];

    //Header CRC
    unsigned short Header_CRC = get_crc_16(0, 0, check_header_length, bek_content);
    printf("Header_CRC %X\n\r",Header_CRC);

    for (int i = 0; i < 80; ++i)
    {
        leave_encrypted_data[i] = bek_content[check_header_length++];
    }

    /*************************************/
    /***** Decrypted *********************/
    /*************************************/
    unsigned char tmp_plaintext[128];
    int cr = 0;


    rounds = 128;
    // Calculate actual keyLength and rounds from the user input
    keyLength = rounds / 32;  //if 128, keyLength = 4
    rounds = keyLength + 6;   //if 128, rounds = 10
printf("keyLength=0x%x,rounds=0x%x\n\r",keyLength,rounds);
    for (int j = 0; j < 5; ++j)
    {
        /* code */
    
        //int t = 15;
        int t = 0;
        for (int i = 0; i < 16; ++i)
        {
            Key[i] = pass_word_l[i];
        }
    
        //printf("Key1:");
    
        for (int i = 0; i < 16; ++i)
        {
            //printf(" %02X", Key[i]);
        }
    
        //printf("\n\r");
    
        for (int i = 0; i < 16; ++i)
        {
            encrypted[i] = leave_encrypted_data[i + j*16];
        }
    
        // Expand_Keys before encryption
        Expand_Keys();
        Decrypt();
    
        //printf("\nDecrypted1: \n\r");
        for (int i = 0; i < blockSize * 4; i++)
        {
        //    printf("%02x ", plaintext[i]);
        }
        //printf("\n\r");
    
        t = 0;
    
        for (int i = 0; i < 8; ++i)
        {
            Key[t++] = (char)(Header_CRC >> 8);
            Key[t++] = (char)(Header_CRC);
        }
    
        for (int i = 0; i < 16; ++i)
        {
            //encrypted[i] = String_[i];
            encrypted[i] = plaintext[i];
        }
    
    
        Expand_Keys();
        Decrypt();
    
        //printf("\nDecrypted2: \n\r");
        //for (int i = 0; i < blockSize * 4; i++)
        //{
        //    printf("%02x ", plaintext[i]);
        //}
        //printf("\n\r");
        //printf("\n\r");

        for (int i = 0; i < 16; ++i)
        {
            tmp_plaintext[cr++] = plaintext[i];
        }

    }

    for (int i = 0; i < 16; ++i)
    {
        Security_Key_128bits[i] = tmp_plaintext[i+0x10];
        printf("Security_Key_128bits[%d]=0x%x\r\n",i,Security_Key_128bits[i]);
    }

    if ( (tmp_plaintext[0]<<8 | tmp_plaintext[1]) != Header_CRC)
    {
        printf("Decrypt fail! Header_CRC = 0x%x,calc = 0x%x\n\r",Header_CRC,(tmp_plaintext[0]<<8 | tmp_plaintext[1]));
        return false;
    }

    printf("Decrypt Done. Please check Security_Key_128bits[]\n\r");

    Valid_BEK = true;

    return true;
}

/*uint8_t BEK::pass_word_l[16] = {
    0x00,0x00,0x00,0x00,0x00,0x4C,0x41,0x54,
    0x54,0x49,0x43,0x45,0x53,0x45,0x4D,0x49
    }; 
*/
/*uint8_t BEK::pass_word_l[16] = {
    0x49,0x4D,0x45,0x53,0x45,0x43,0x49,0x54,
    0x54,0x41,0x4C,0x00,0x00,0x00,0x00,0x00
    }; */

//#define flip(c) fliptab[c]
// Used for CRC calculation
unsigned short int get_crc_16(int start, long loc, int n, char *bs )
{
    unsigned short int crc = start;
    int r;
    char data;
    
    while (n-->0)
    {
        //data=flip(bs.getbyte(loc));
        

        //printf("1. %X\n", bs[loc]);//FFFFFF9C

        data = bs[loc] & 0xFF; //printf("2. %X\n",data);

        data= fliptab[0xFF & data];   //printf("3. %X\n",data);

        r = crc_16_table[crc & 0xF];
        crc = (crc>>4) & 0x0FFF;
        crc = crc^r^crc_16_table[data & 0xF];
        // calculate CRC for the upper 4 bits of data
        r = crc_16_table[crc & 0xF];
        crc = (crc>>4) & 0x0FFF;
        crc = crc^r^crc_16_table[(data>>4) & 0xF];
        //next data
        loc++;
    }
    return (crc);
}


// Returns Rijndael S-box value
int get_SBox_Value(int num)
{
    // lookup table
    int sbox[256] =   {
    0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
    0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
    0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
    0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
    0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
    0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
    0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
    0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
    0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
    0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
    0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
    0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
    0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
    0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
    0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
    0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
    };
    return sbox[num];
}


// Returns inverse Rijndael S-box value
int get_SBox_Inverse(int num)
{
    // lookup table
    int rsbox[256] =    { 
    0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
    0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
    0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
    0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
    0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
    0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
    0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
    0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
    0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
    0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
    0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
    0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
    0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
    0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
    0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
    0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
    };

    return rsbox[num];
}

// Deduces round keys from the primary Key provided
void Expand_Keys()
{
    int i,j;
    unsigned char temp[4],k;
    
    // Use the primary Key for first round
    for(i = 0; i < keyLength; i++)
    {
        roundKey[i*4]=Key[i*4];
        roundKey[i*4+1]=Key[i*4+1];
        roundKey[i*4+2]=Key[i*4+2];
        roundKey[i*4+3]=Key[i*4+3];
    }

    // Each subsequent round key is deduced from previously deduced round keys
    while (i < (blockSize * (rounds+1)))
    {
                    for(j=0;j<4;j++)
                    {
                        temp[j]=roundKey[(i-1) * 4 + j];
                    }
                    if (i % keyLength == 0)
                    {
                        // Rotate the bytes in a word to the left.
                        {
                            k = temp[0];
                            temp[0] = temp[1];
                            temp[1] = temp[2];
                            temp[2] = temp[3];
                            temp[3] = k;
                        }

                        // Take a four-byte input and apply the S-box to each of the four bytes
                        {
                            temp[0]=get_SBox_Value(temp[0]);
                            temp[1]=get_SBox_Value(temp[1]);
                            temp[2]=get_SBox_Value(temp[2]);
                            temp[3]=get_SBox_Value(temp[3]);
                        }

                        temp[0] =  temp[0] ^ Rcon[i/keyLength];
                    }
                    else if (keyLength > 6 && i % keyLength == 4)
                    {
                        {
                            temp[0]=get_SBox_Value(temp[0]);
                            temp[1]=get_SBox_Value(temp[1]);
                            temp[2]=get_SBox_Value(temp[2]);
                            temp[3]=get_SBox_Value(temp[3]);
                        }
                    }
                    roundKey[i*4+0] = roundKey[(i-keyLength)*4+0] ^ temp[0];
                    roundKey[i*4+1] = roundKey[(i-keyLength)*4+1] ^ temp[1];
                    roundKey[i*4+2] = roundKey[(i-keyLength)*4+2] ^ temp[2];
                    roundKey[i*4+3] = roundKey[(i-keyLength)*4+3] ^ temp[3];
                    i++;
    }
}

// Add round key to state by XOR-ing
void Add_Round_Key(int round) 
{
    int i,j;
    for (i = 0; i < 4; i++)
    {
        for(j = 0; j < 4; j++)
        {
            state[j][i] ^= roundKey[round * blockSize * 4 + i * blockSize + j];
        }
    }
}
// Substitute state matrix values with corresponding S-box values
void Sub_Bytes()
{
    int i,j;
    for(i = 0; i < 4; i++)
    {
        for(j = 0; j < 4; j++)
        {
            state[i][j] = get_SBox_Value(state[i][j]);

        }
    }
}
// Same as Sub_Bytes, but uses reverse SBox
void Inv_Sub_Bytes()
{
    int i, j;
    for (i = 0; i<4; i++)
    {
        for (j = 0; j<4; j++)
        {
            state[i][j] = get_SBox_Inverse(state[i][j]);

        }
    }
}

// Shift the rows in the state to the left by the row number value
void Shift_Rows()
{
    unsigned char temp;

    // First row by 1
    temp=state[1][0];
    state[1][0]=state[1][1];
    state[1][1]=state[1][2];
    state[1][2]=state[1][3];
    state[1][3]=temp;

    // Second row by 2
    temp=state[2][0];
    state[2][0]=state[2][2];
    state[2][2]=temp;
    temp=state[2][1];
    state[2][1]=state[2][3];
    state[2][3]=temp;

    // Third row by 3
    temp=state[3][0];
    state[3][0]=state[3][3];
    state[3][3]=state[3][2];
    state[3][2]=state[3][1];
    state[3][1]=temp;
}


// Same as Shift_Rows, but shifts right instead
void Inv_Shift_Rows()
{
    unsigned char temp;
    
    temp = state[1][3];
    state[1][3] = state[1][2];
    state[1][2] = state[1][1];
    state[1][1] = state[1][0];
    state[1][0] = temp;

    temp = state[2][0];
    state[2][0] = state[2][2];
    state[2][2] = temp;
    temp = state[2][1];
    state[2][1] = state[2][3];
    state[2][3] = temp;

    temp = state[3][0];
    state[3][0] = state[3][1];
    state[3][1] = state[3][2];
    state[3][2] = state[3][3];
    state[3][3] = temp;
}
// Mixes the columns of the state matrix
void Mix_Columns()
{
    int i;
    unsigned char x1, x2, x3;
    for (i = 0; i < 4; i++)
    {    
        x1 = state[0][i];
        x3 = state[0][i] ^ state[1][i] ^ state[2][i] ^ state[3][i];
        x2 = state[0][i] ^ state[1][i]; x2 = xtime(x2); state[0][i] ^= x2 ^ x3;
        x2 = state[1][i] ^ state[2][i]; x2 = xtime(x2); state[1][i] ^= x2 ^ x3;
        x2 = state[2][i] ^ state[3][i]; x2 = xtime(x2); state[2][i] ^= x2 ^ x3;
        x2 = state[3][i] ^ x1; x2 = xtime(x2); state[3][i] ^= x2 ^ x3;
    }
}

// Inverse mixing of columns
void Inv_Mix_Columns()
{
    int i;
    unsigned char x1, x2, x3, x4;
    for (i = 0; i < 4; i++)
    {
        x1 = state[0][i];
        x2 = state[1][i];
        x3 = state[2][i];
        x4 = state[3][i];

        state[0][i] = Multiply(x1, 0x0e) ^ Multiply(x2, 0x0b) ^ Multiply(x3, 0x0d) ^ Multiply(x4, 0x09);
        state[1][i] = Multiply(x1, 0x09) ^ Multiply(x2, 0x0e) ^ Multiply(x3, 0x0b) ^ Multiply(x4, 0x0d);
        state[2][i] = Multiply(x1, 0x0d) ^ Multiply(x2, 0x09) ^ Multiply(x3, 0x0e) ^ Multiply(x4, 0x0b);
        state[3][i] = Multiply(x1, 0x0b) ^ Multiply(x2, 0x0d) ^ Multiply(x3, 0x09) ^ Multiply(x4, 0x0e);
    }
}

void Encrypt()
{
    int i,j,round=0;

    // Copy plaintext to state array
    for (i = 0; i < 4; i++)
    {
        for (j = 0; j < 4; j++)
        {
            state[j][i] = plaintext[i * 4 + j];
        }
    }

    // Add the first round key to the state before starting the rounds
    Add_Round_Key(0); 
    
    // The first rounds-1 rounds are the same
    for (round = 1; round < rounds; round++)
    {
        Sub_Bytes();
        Shift_Rows();
        Mix_Columns();
        Add_Round_Key(round);
    }
    
    // Last round has no Mix_Columns()
    Sub_Bytes();
    Shift_Rows();
    Add_Round_Key(rounds);

    // Copy the state array to output
    for (i = 0; i < 4; i++)
    {
        for(j = 0; j < 4; j++)
        {
            encrypted[i * 4 + j] = state[j][i];
        }
    }
}

void Decrypt()
{
    int i, j, round = 0;

    // Copy cyphertext to state array
    for (i = 0; i<4; i++)
    {
        for (j = 0; j<4; j++)
        {
            state[j][i] = encrypted[i * 4 + j];
        }
    }

    Add_Round_Key(rounds);

    for (round = rounds - 1; round>0; round--)
    {
        Inv_Shift_Rows();
        Inv_Sub_Bytes();
        Add_Round_Key(round);
        Inv_Mix_Columns();
    }

    Inv_Shift_Rows();
    Inv_Sub_Bytes();
    Add_Round_Key(0);

    // Copy the state array to output
    for (i = 0; i<4; i++)
    {
        for (j = 0; j<4; j++)
        {
            plaintext[i * 4 + j] = state[j][i];
        }
    }

}

int main()
{
    bool ret = true;
    if(false == BEK_CRC_check())
    {
        printf("CRC err!");
    }
    else
    {
        printf("CRC ok!");
    }
}