333

发布时间 2023-12-06 10:22:44作者: helloWorldhelloWorld
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange

# Borrowed from ''Improving image restoration by revisiting global information aggregation''
# --------------------------------------------------------------------------------
train_size = (1, 3, 256, 256)


class AvgPool2d(nn.Module):
    def __init__(self, kernel_size=None, base_size=None, auto_pad=True, fast_imp=False):
        super().__init__()
        self.kernel_size = kernel_size
        self.base_size = base_size
        self.auto_pad = auto_pad

        # only used for fast implementation
        self.fast_imp = fast_imp
        self.rs = [5, 4, 3, 2, 1]
        self.max_r1 = self.rs[0]
        self.max_r2 = self.rs[0]

    def extra_repr(self) -> str:
        return 'kernel_size={}, base_size={}, stride={}, fast_imp={}'.format(
            self.kernel_size, self.base_size, self.kernel_size, self.fast_imp
        )

    def forward(self, x):
        if self.kernel_size is None and self.base_size:
            if isinstance(self.base_size, int):
                self.base_size = (self.base_size, self.base_size)
            self.kernel_size = list(self.base_size)
            self.kernel_size[0] = x.shape[2] * self.base_size[0] // train_size[-2]
            self.kernel_size[1] = x.shape[3] * self.base_size[1] // train_size[-1]

            # only used for fast implementation
            self.max_r1 = max(1, self.rs[0] * x.shape[2] // train_size[-2])
            self.max_r2 = max(1, self.rs[0] * x.shape[3] // train_size[-1])

        if self.fast_imp:  # Non-equivalent implementation but faster
            h, w = x.shape[2:]
            if self.kernel_size[0] >= h and self.kernel_size[1] >= w:
                out = F.adaptive_avg_pool2d(x, 1)
            else:
                r1 = [r for r in self.rs if h % r == 0][0]
                r2 = [r for r in self.rs if w % r == 0][0]
                r1 = min(self.max_r1, r1)
                r2 = min(self.max_r2, r2)
                s = x[:, :, ::r1, ::r2].cumsum(dim=-1).cumsum(dim=-2)
                n, c, h, w = s.shape
                k1, k2 = min(h - 1, self.kernel_size[0] // r1), min(w - 1, self.kernel_size[1] // r2)
                out = (s[:, :, :-k1, :-k2] - s[:, :, :-k1, k2:] - s[:, :, k1:, :-k2] + s[:, :, k1:, k2:]) / (k1 * k2)
                out = torch.nn.functional.interpolate(out, scale_factor=(r1, r2))
        else:
            n, c, h, w = x.shape
            s = x.cumsum(dim=-1).cumsum(dim=-2)
            s = torch.nn.functional.pad(s, (1, 0, 1, 0))  # pad 0 for convenience
            k1, k2 = min(h, self.kernel_size[0]), min(w, self.kernel_size[1])
            s1, s2, s3, s4 = s[:, :, :-k1, :-k2], s[:, :, :-k1, k2:], s[:, :, k1:, :-k2], s[:, :, k1:, k2:]
            out = s4 + s1 - s2 - s3
            out = out / (k1 * k2)

        if self.auto_pad:
            n, c, h, w = x.shape
            _h, _w = out.shape[2:]
            pad2d = ((w - _w) // 2, (w - _w + 1) // 2, (h - _h) // 2, (h - _h + 1) // 2)
            out = torch.nn.functional.pad(out, pad2d, mode='replicate')

        return out


# --------------------------------------------------------------------------------


class BasicConv(nn.Module):
    def __init__(self, in_channel, out_channel, kernel_size, stride, bias=True, norm=False, relu=True, transpose=False):
        super(BasicConv, self).__init__()
        if bias and norm:
            bias = False

        padding = kernel_size // 2
        layers = list()
        if transpose:
            padding = kernel_size // 2 - 1
            layers.append(
                nn.ConvTranspose2d(in_channel, out_channel, kernel_size, padding=padding, stride=stride, bias=bias))
        else:
            layers.append(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding, stride=stride, bias=bias))
        if norm:
            layers.append(nn.BatchNorm2d(out_channel))
        if relu:
            layers.append(nn.GELU())
        self.main = nn.Sequential(*layers)

    def forward(self, x):
        return self.main(x)


class Gap(nn.Module):
    def __init__(self, in_channel, mode) -> None:
        super().__init__()

        self.fscale_d = nn.Parameter(torch.zeros(in_channel), requires_grad=True)
        self.fscale_h = nn.Parameter(torch.zeros(in_channel), requires_grad=True)
        if mode == 'train':
            self.gap = nn.AdaptiveAvgPool2d((1, 1))
        elif mode == 'test':
            self.gap = AvgPool2d(base_size=246)

    def forward(self, x):
        x_d = self.gap(x)
        x_h = (x - x_d) * (self.fscale_h[None, :, None, None] + 1.)
        x_d = x_d * self.fscale_d[None, :, None, None]
        return x_d + x_h


class YYBlock(nn.Module):
    def __init__(self, in_channel=3, out_channel=20, relu_slope=0.2):
        super(YYBlock, self).__init__()

        self.spatialConv = nn.Sequential(*[
            nn.Conv2d(in_channel, out_channel, kernel_size=3, padding=1, bias=True),
            nn.LeakyReLU(relu_slope, inplace=False),
            nn.Conv2d(out_channel, out_channel, kernel_size=3, padding=1, bias=True),
            nn.LeakyReLU(relu_slope, inplace=False)
        ])

        self.identity = nn.Conv2d(in_channel, out_channel, 1, 1, 0)

        self.fftConv2 = nn.Sequential(*[
            nn.Conv2d(out_channel, out_channel, 1, 1, 0),
            nn.LeakyReLU(relu_slope, inplace=False),
            nn.Conv2d(out_channel, out_channel, 1, 1, 0)
        ])

        self.fusion = nn.Conv2d(out_channel * 2, out_channel, 1, 1, 0)


    def forward(self, x1):
        spatial_out = self.spatialConv(x1)
        identity_out = self.identity(x1)
        out = spatial_out + identity_out

        x_fft = torch.fft.rfft2(out, norm='backward')
        x_amp = torch.abs(x_fft)
        x_phase = torch.angle(x_fft)

        enhanced_phase = self.fftConv2(x_phase)
        enhanced_amp = self.fftConv2(x_amp)
        # x_fft_out1 = torch.fft.irfft2(x_amp * torch.exp(1j * enhanced_phase), norm='backward')
        x_fft_out2 = torch.fft.irfft2(enhanced_amp * torch.exp(1j * x_phase), norm='backward')

        # out = self.fusion(torch.cat([out, x_fft_out2], dim=1))

        return x_fft_out2


class ResBlock(nn.Module):
    def __init__(self, in_channel, out_channel, mode, filter=False):
        super(ResBlock, self).__init__()
        self.conv1 = BasicConv(in_channel, out_channel, kernel_size=3, stride=1, relu=True)
        self.conv2 = BasicConv(out_channel, out_channel, kernel_size=3, stride=1, relu=False)

        self.yyBlock = YYBlock(in_channel, out_channel, relu_slope=0.2)
        self.filter = filter

    def forward(self, x):
        out = self.conv1(x)

        out = self.yyBlock(out)

        out = out + x
        return out


# class SFconv(nn.Module):
#     def __init__(self, features, mode, M=2, r=2, L=32) -> None:
#         super().__init__()
#
#         d = max(int(features / r), L)
#         self.features = features
#
#         self.fc = nn.Conv2d(features, d, 1, 1, 0)
#         self.fcs = nn.ModuleList([])
#         for i in range(M):
#             self.fcs.append(
#                 nn.Conv2d(d, features, 1, 1, 0)
#             )
#         self.softmax = nn.Softmax(dim=1)
#         self.out = nn.Conv2d(features, features, 1, 1, 0)
#
#         if mode == 'train':
#             self.gap = nn.AdaptiveAvgPool2d(1)
#         elif mode == 'test':
#             self.gap = AvgPool2d(base_size=246)
#
#     def forward(self, low, high):
#         emerge = low + high
#         emerge = self.gap(emerge)
#
#         fea_z = self.fc(emerge)
#
#         high_att = self.fcs[0](fea_z)
#         low_att = self.fcs[1](fea_z)
#
#         attention_vectors = torch.cat([high_att, low_att], dim=1)
#
#         attention_vectors = self.softmax(attention_vectors)
#         high_att, low_att = torch.chunk(attention_vectors, 2, dim=1)
#
#         fea_high = high * high_att
#         fea_low = low * low_att
#
#         out = self.out(fea_high + fea_low)
#         return out
#
#
# class Patch_ap(nn.Module):
#     def __init__(self, mode, inchannel, patch_size):
#         super(Patch_ap, self).__init__()
#
#         if mode == 'train':
#             self.ap = nn.AdaptiveAvgPool2d((1, 1))
#         elif mode == 'test':
#             self.ap = AvgPool2d(base_size=246)
#
#         self.patch_size = patch_size
#         self.channel = inchannel * patch_size ** 2
#         self.h = nn.Parameter(torch.zeros(self.channel))
#         self.l = nn.Parameter(torch.zeros(self.channel))
#
#     def forward(self, x):
#
#         patch_x = rearrange(x, 'b c (p1 w1) (p2 w2) -> b c p1 w1 p2 w2', p1=self.patch_size, p2=self.patch_size)
#         patch_x = rearrange(patch_x, ' b c p1 w1 p2 w2 -> b (c p1 p2) w1 w2', p1=self.patch_size, p2=self.patch_size)
#
#         low = self.ap(patch_x)
#         high = (patch_x - low) * self.h[None, :, None, None]
#         out = high + low * self.l[None, :, None, None]
#         out = rearrange(out, 'b (c p1 p2) w1 w2 -> b c (p1 w1) (p2 w2)', p1=self.patch_size, p2=self.patch_size)
#
#         return out
View Code
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange

# Borrowed from ''Improving image restoration by revisiting global information aggregation''
# --------------------------------------------------------------------------------
train_size = (1, 3, 256, 256)


class AvgPool2d(nn.Module):
    def __init__(self, kernel_size=None, base_size=None, auto_pad=True, fast_imp=False):
        super().__init__()
        self.kernel_size = kernel_size
        self.base_size = base_size
        self.auto_pad = auto_pad

        # only used for fast implementation
        self.fast_imp = fast_imp
        self.rs = [5, 4, 3, 2, 1]
        self.max_r1 = self.rs[0]
        self.max_r2 = self.rs[0]

    def extra_repr(self) -> str:
        return 'kernel_size={}, base_size={}, stride={}, fast_imp={}'.format(
            self.kernel_size, self.base_size, self.kernel_size, self.fast_imp
        )

    def forward(self, x):
        if self.kernel_size is None and self.base_size:
            if isinstance(self.base_size, int):
                self.base_size = (self.base_size, self.base_size)
            self.kernel_size = list(self.base_size)
            self.kernel_size[0] = x.shape[2] * self.base_size[0] // train_size[-2]
            self.kernel_size[1] = x.shape[3] * self.base_size[1] // train_size[-1]

            # only used for fast implementation
            self.max_r1 = max(1, self.rs[0] * x.shape[2] // train_size[-2])
            self.max_r2 = max(1, self.rs[0] * x.shape[3] // train_size[-1])

        if self.fast_imp:  # Non-equivalent implementation but faster
            h, w = x.shape[2:]
            if self.kernel_size[0] >= h and self.kernel_size[1] >= w:
                out = F.adaptive_avg_pool2d(x, 1)
            else:
                r1 = [r for r in self.rs if h % r == 0][0]
                r2 = [r for r in self.rs if w % r == 0][0]
                r1 = min(self.max_r1, r1)
                r2 = min(self.max_r2, r2)
                s = x[:, :, ::r1, ::r2].cumsum(dim=-1).cumsum(dim=-2)
                n, c, h, w = s.shape
                k1, k2 = min(h - 1, self.kernel_size[0] // r1), min(w - 1, self.kernel_size[1] // r2)
                out = (s[:, :, :-k1, :-k2] - s[:, :, :-k1, k2:] - s[:, :, k1:, :-k2] + s[:, :, k1:, k2:]) / (k1 * k2)
                out = torch.nn.functional.interpolate(out, scale_factor=(r1, r2))
        else:
            n, c, h, w = x.shape
            s = x.cumsum(dim=-1).cumsum(dim=-2)
            s = torch.nn.functional.pad(s, (1, 0, 1, 0))  # pad 0 for convenience
            k1, k2 = min(h, self.kernel_size[0]), min(w, self.kernel_size[1])
            s1, s2, s3, s4 = s[:, :, :-k1, :-k2], s[:, :, :-k1, k2:], s[:, :, k1:, :-k2], s[:, :, k1:, k2:]
            out = s4 + s1 - s2 - s3
            out = out / (k1 * k2)

        if self.auto_pad:
            n, c, h, w = x.shape
            _h, _w = out.shape[2:]
            pad2d = ((w - _w) // 2, (w - _w + 1) // 2, (h - _h) // 2, (h - _h + 1) // 2)
            out = torch.nn.functional.pad(out, pad2d, mode='replicate')

        return out


# --------------------------------------------------------------------------------


class BasicConv(nn.Module):
    def __init__(self, in_channel, out_channel, kernel_size, stride, bias=True, norm=False, relu=True, transpose=False):
        super(BasicConv, self).__init__()
        if bias and norm:
            bias = False

        padding = kernel_size // 2
        layers = list()
        if transpose:
            padding = kernel_size // 2 - 1
            layers.append(
                nn.ConvTranspose2d(in_channel, out_channel, kernel_size, padding=padding, stride=stride, bias=bias))
        else:
            layers.append(nn.Conv2d(in_channel, out_channel, kernel_size, padding=padding, stride=stride, bias=bias))
        if norm:
            layers.append(nn.BatchNorm2d(out_channel))
        if relu:
            layers.append(nn.GELU())
        self.main = nn.Sequential(*layers)

    def forward(self, x):
        return self.main(x)


class Gap(nn.Module):
    def __init__(self, in_channel, mode) -> None:
        super().__init__()

        self.fscale_d = nn.Parameter(torch.zeros(in_channel), requires_grad=True)
        self.fscale_h = nn.Parameter(torch.zeros(in_channel), requires_grad=True)
        if mode == 'train':
            self.gap = nn.AdaptiveAvgPool2d((1, 1))
        elif mode == 'test':
            self.gap = AvgPool2d(base_size=246)

    def forward(self, x):
        x_d = self.gap(x)
        x_h = (x - x_d) * (self.fscale_h[None, :, None, None] + 1.)
        x_d = x_d * self.fscale_d[None, :, None, None]
        return x_d + x_h


class YYBlock(nn.Module):
    def __init__(self, in_channel=3, out_channel=20, relu_slope=0.2):
        super(YYBlock, self).__init__()

        self.spatialConv = nn.Sequential(*[
            nn.Conv2d(in_channel, out_channel, kernel_size=3, padding=1, bias=True),
            nn.LeakyReLU(relu_slope, inplace=False),
            nn.Conv2d(out_channel, out_channel, kernel_size=3, padding=1, bias=True),
            nn.LeakyReLU(relu_slope, inplace=False)
        ])

        self.identity = nn.Conv2d(in_channel, out_channel, 1, 1, 0)

        self.fftConv2 = nn.Sequential(*[
            nn.Conv2d(out_channel, out_channel, 1, 1, 0),
            nn.LeakyReLU(relu_slope, inplace=False),
            nn.Conv2d(out_channel, out_channel, 1, 1, 0)
        ])

        self.fusion = nn.Conv2d(out_channel * 2, out_channel, 1, 1, 0)

    def forward(self, x1):
        spatial_out = self.spatialConv(x1)
        identity_out = self.identity(x1)
        out = spatial_out + identity_out

        x_fft = torch.fft.rfft2(out, norm='backward')
        x_amp = torch.abs(x_fft)
        x_phase = torch.angle(x_fft)

        enhanced_phase = self.fftConv2(x_phase)
        enhanced_amp = self.fftConv2(x_amp)
        # x_fft_out1 = torch.fft.irfft2(x_amp * torch.exp(1j * enhanced_phase), norm='backward')
        x_fft_out2 = torch.fft.irfft2(enhanced_amp * torch.exp(1j * x_phase), norm='backward')

        # out = self.fusion(torch.cat([out, x_fft_out2], dim=1))

        return x_fft_out2


class ResBlock(nn.Module):
    def __init__(self, in_channel, out_channel, mode, filter=False):
        super(ResBlock, self).__init__()
        self.conv1 = BasicConv(in_channel, out_channel, kernel_size=3, stride=1, relu=True)
        self.yyBlock = YYBlock(in_channel, out_channel, relu_slope=0.2)
        self.filter = filter

    def forward(self, x):
        out = self.conv1(x)

        out = self.yyBlock(out)

        out = out + x
        return out


# class SpaBlock(nn.Module):
#     def __init__(self, in_channel=3, out_channel=20, relu_slope=0.2):
#         super(SpaBlock, self).__init__()
#         self.identity = nn.Conv2d(in_channel, out_channel, 1, 1, 0)
#         self.conv1 = BasicConv(in_channel, out_channel, kernel_size=3, stride=1, relu=True)
#
#         self.spatialConv = nn.Sequential(*[
#             # nn.Conv2d(in_channel, out_channel, kernel_size=3, padding=1, bias=True),
#             # nn.GELU(),
#             nn.Conv2d(out_channel, out_channel, kernel_size=3, padding=1, bias=True),
#             nn.LeakyReLU(relu_slope, inplace=False),
#             nn.Conv2d(out_channel, out_channel, kernel_size=3, padding=1, bias=True),
#             nn.LeakyReLU(relu_slope, inplace=False)
#         ])
#
#     def forward(self, x):
#         conv1_out = self.conv1(x)
#         spa_out = self.spatialConv(conv1_out)
#         iden_out = self.identity(conv1_out)
#         out = iden_out + spa_out
#
#         return out
#
#
# class FreqBlock(nn.Module):
#     def __init__(self, in_channel=3, out_channel=20, relu_slope=0.2):
#         super(FreqBlock, self).__init__()
#         self.freqConv = nn.Sequential(*[
#             nn.Conv2d(out_channel, out_channel, 1, 1, 0),
#             nn.LeakyReLU(relu_slope, inplace=False),
#             nn.Conv2d(out_channel, out_channel, 1, 1, 0)
#         ])
#
#     def forward(self, x):
#         x_fft = torch.fft.rfft2(x, norm='backward')
#         x_amp = torch.abs(x_fft)
#         x_phase = torch.angle(x_fft)
#
#         # enhanced_phase = self.fftConv2(x_phase)
#         enhanced_amp = self.freqConv(x_amp)
#         x_fft_out2 = torch.fft.irfft2(enhanced_amp * torch.exp(1j * x_phase), norm='backward')
#
#         return x_fft_out2
#
#
# class ResBlock(nn.Module):
#     def __init__(self, in_channel, out_channel, mode, filter=False):
#         super(ResBlock, self).__init__()
#         self.spaBlock = SpaBlock(in_channel, out_channel)
#         self.freqBlock = FreqBlock(in_channel, out_channel)
#
#     def forward(self, x):
#         out = self.spaBlock(x)
#         out = self.freqBlock(out)
#         out = out + x
#
#         return out
View Code