TIM-PWM边沿检测时TI1F_ED的应用解析

发布时间 2023-07-17 16:55:13作者: WCH_CH32

TIM-PWM边沿检测时TI1F_ED的应用解析

定时器框图TI1F_ED指示如下所示:

以TIMx_CH1的信号为例:

TI1FP1和TI1FP2解析:从TIMx_CH1进入的TI1信号,经过输入滤波器生成TI1F,再经过边沿检测器(捕获极性选择上升沿或下降沿)生成TI1FP1和TI1FP2。

TI1F_ED解析:TI1经过边沿检测器后生成TI1F_ED信号(双边沿检测,在捕获到TI1F上的边沿后,生成脉冲信号,详解如下图所示)

TRC解析:TI1FED信号经过选择器生成TRC信号,将IC1的输入捕获信号配置成TRC信号,即之前边沿检测器检测TI1F_ED的信号,无论捕获极性选择的是检测上升沿还是下降沿,都可以检测到TI1F信号的双边沿。

使用限制:从定时器框图可以看出,只有TIMx_CH1的信号是直接通过选择器生成TI1信号的,第二个选择则是TIMx_CH1、TIMx_CH2、TIMx_CH3三个通道的信号经过异或生成的TI1信号。

使用场景:TI1F_ED的应用实际上多用于使用限制中的第二个选择,使用场景为有感无刷电机应用中,三个定时器通道引脚对应着霍尔传感器的是哪个信号检测位置;三个通道的信号经过异或后生成新的TI1信号,在间隔60°相位上的每个边沿指导电机进行换相的操作,即一旦捕获到边沿即进行换相的操作。

附CH32V307VCT6使用TIM1_CH1的TI1F_ED捕获通道双边沿例程

#include "debug.h"

void TIM1_CC_IRQHandler(void) __attribute__((interrupt("WCH-Interrupt-fast")));

void TIM1_CC_IRQHandler(void)

{

if( TIM_GetITStatus( TIM1, TIM_IT_CC1 ) != RESET )

{

GPIOA->BCR=GPIO_Pin_7;

GPIOA->BSHR=GPIO_Pin_7;

TIM_SetCounter( TIM1, 0 );

}

if( TIM_GetITStatus( TIM1, TIM_IT_Trigger ) != RESET )

{

GPIOA->BCR=GPIO_Pin_6;

GPIOA->BSHR=GPIO_Pin_6;

TIM_SetCounter( TIM1, 0 );

}

TIM_ClearITPendingBit( TIM1, TIM_IT_CC1 );

}

void Input_Capture_Init( u16 arr, u16 psc )

{

GPIO_InitTypeDef GPIO_InitStructure={0};

TIM_ICInitTypeDef TIM_ICInitStructure={0};

TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure={0};

NVIC_InitTypeDef NVIC_InitStructure={0};

RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA | RCC_APB2Periph_TIM1, ENABLE );

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;

GPIO_Init( GPIOA, &GPIO_InitStructure);

GPIO_ResetBits( GPIOA, GPIO_Pin_8 );

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init( GPIOA, &GPIO_InitStructure);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init( GPIOA, &GPIO_InitStructure);

TIM_TimeBaseInitStructure.TIM_Period = arr;

TIM_TimeBaseInitStructure.TIM_Prescaler = psc;

TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1;

TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;

TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0x00;

TIM_TimeBaseInit( TIM1, &TIM_TimeBaseInitStructure);

TIM_ICInitStructure.TIM_Channel = TIM_Channel_1;

TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;

TIM_ICInitStructure.TIM_ICFilter = 0x00;

TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;

TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_TRC;

TIM_ICInit( TIM1, &TIM_ICInitStructure );

NVIC_InitStructure.NVIC_IRQChannel = TIM1_CC_IRQn;

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;

NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

NVIC_Init(&NVIC_InitStructure);

TIM_ITConfig( TIM1, TIM_IT_CC1|TIM_IT_Trigger, ENABLE );

TIM_SelectInputTrigger( TIM1, TIM_TS_TI1F_ED );

TIM_SelectSlaveMode( TIM1, TIM_SlaveMode_Reset );

TIM_SelectMasterSlaveMode( TIM1, TIM_MasterSlaveMode_Enable );

// TIM_SelectHallSensor(TIM1,ENABLE);

TIM_Cmd( TIM1, ENABLE );

}

int main(void)

{

SystemCoreClockUpdate();

Input_Capture_Init( 0xFFFF, 144-1 );

while(1);

}