逃逸分析案例

发布时间 2023-12-12 18:24:32作者: 李若盛开

1.函数返回局部指针变量

func Add(x,y int) *int {
 res := 0
 res = x + y
 return &res
}
func main()  {
 Add(1,2)
}

函数返回局部变量是一个指针变量,该函数执行结束,对应栈帧就会销毁,但是引用返回到函数外部,如果我们外部解析地址,就会导致程序访问非法内存,所以经过编辑器分析过后将其在堆上分配

2.interface类型逃逸

1)interface产生逃逸

func main()  {
   str := "荔枝"
   fmt.Println(str)
}

str是main的一个局部变量,传给 fmt.Printl()之后逃逸,因为fmt.Println()的入参是interface{}类型,如果参数为interface{},那么编译期间就很难确定参数类型

2)指向栈对象的指针不能在堆中

func main()  {
   str := "苏珊"
   fmt.Println(&str)
}

这次str也逃逸到堆上面了,在堆上面进行分配,因为入参是interface,变量str的地址被以实参的方式传入fmt.Println被装箱到一个interface{}

装箱的形参变量要在堆上分配,但是还需要存储一个栈上的地址,这和之前说的第一条不符,所以str也会分配到堆上

3.闭包产生逃逸

func Increase() func() int {
 n := 0
 return func() int {
  n++
  return n
 }
}

func main() {
 in := Increase()
 fmt.Println(in()) // 1
}

因为函数是指针类型,所以匿名函数当做返回值产生逃逸,匿名函数使用外部变量n,这个n会一直存在知道in被销毁

4. 变量大小不确定及栈空间不足引发逃逸

import (
    "math/rand"
)

func LessThan8192()  {
    nums := make([]int, 100) // = 64KB
    for i := 0; i < len(nums); i++ {
        nums[i] = rand.Int()
    }
}


func MoreThan8192(){
    nums := make([]int, 1000000) // = 64KB
    for i := 0; i < len(nums); i++ {
        nums[i] = rand.Int()
    }
}


func NonConstant() {
    number := 10
    s := make([]int, number)
    for i := 0; i < len(s); i++ {
        s[i] = i
    }
}

func main() {
    NonConstant()
    MoreThan8192()
    LessThan8192()
}

栈空间足够不会发生逃逸,但是变量过大,已经超过栈空间,会逃逸到堆上

总结
1)逃逸分析在编译阶段确定哪些变量可以分配在栈中,哪些变量分配在堆上
2)逃逸分析减轻了GC压力,提高程序的运行速度
3)栈上内存使用完毕不需要GC处理,堆上内存使用完毕会交给GC处理
4)函数传参时对于需要修改原对象值,或占用内存比较大的结构体,选择传指针。对于只读的占用内存较小的结构体,直接传值能够获得更好的性能
5)根据代码具体分析,尽量减少逃逸代码,减轻GC压力,提高性能