多线程学习第五篇

发布时间 2023-09-02 23:05:30作者: 紫宁不嗣音

5、线程协作(线程通信)

应用场景:生产者和消费者问题

  • 假设仓库中只能存放一件产品,生产者将生产出来的产品放入仓库,消费者将仓库中产品取走消费。
  • 如果仓库中没有产品,则将生产者将产品放入仓库,否则停止生产并等待,直到仓库中的产品被消费者取走为止。
  • 如果仓库中放有产品,则消费者可以将产品取走消费,否则停止消费,直到仓库中再次放入产品为止。

这是一个线程同步问题,生产者和消费者共享同一个资源,并且生产者和消费者之间相互依赖,互为条件。

  • 对于生产者,没有生产产品之前,要通知消费者等待.而生产了产品之后,又需要马上通知消费者消费
  • 对于消费者,在消费之后,要通知生产者已经结束消费,需要生产新的产品以供消费.
  • 在生产者消费者问题中,仅有synchronized是不够的

synchronized :可阻止并发更新同一个共享资源,实现了同步,不能用来实现不同线程之间的通信

5.1、解决线程通信的几个方法

方法 作用
wait() 表示线程一直邓艾,直到其他线程通知,与sleep()不同,会释放锁
wait(long timeout) 指定等待的毫秒数
notify() 唤醒一个处于等待状态的线程
notifyAll() 唤醒同一个对象上所有调用wait()方法的线程,优先级别高的线程优先调度

注意: 均是Object类的方法,都只能在同步方法或者同步代码快中使用,否则会抛出异常 illegalMonitorStateException

5.2、解决线程之间通信的方式

5.2.1、管程法

并发写作模型""生产者/消费者模式""–>管程法

  • 生产者:负责生产数据的模块(可能是方法,对象,线程,进程)
  • 消费者:负责处理数据的模块(可能是方法,对象,线程,进程)
  • 缓冲区:消费者不能直接使用生产者的数据,他们之间有个缓冲区

生产者将生产好的数据放入缓冲区,消费者从缓冲区拿出数据。

案例:

package com.thread.communication;

// 测试 生产者消费者模型 --> 利用缓冲区解决:管程法

public class TestPC {
    public static void main(String[] args) {
        SynBuffer synBuffer = new SynBuffer();

        new Producer(synBuffer).start();
        new Consumer(synBuffer).start();
    }
}

// 生产者
class Producer extends Thread{
    SynBuffer buffer;
    public Producer(SynBuffer buffer){
        this.buffer = buffer;
    }
    // 生产

    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            try {
                buffer.push(new Chicken(i));
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println("生产了" + i +"只鸡");
        }
    }
}

// 消费者
class Consumer extends Thread{
    SynBuffer buffer;
    public Consumer(SynBuffer buffer){
        this.buffer = buffer;
    }

    // 消费

    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            try {
                System.out.println("消费了-->" + buffer.pop().id +"只鸡");
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
    }
}

// 产品
class Chicken{
    int id; // 产品编号

    public Chicken(int id) {
        this.id = id;
    }
}

// 缓冲区
class SynBuffer{

    //容器大小
    Chicken[] chickens = new Chicken[10];
    // 容器计数器
    int count = 0;

    // 生产者放入产品
    public synchronized void push(Chicken chicken) throws InterruptedException {
        // 如果容器满了,需要等待消费者消费
        if(count == chickens.length){
            // 通知消费者消费,生产等待
            this.wait();
        }
        // 如果没有满,需要丢入产品
        chickens[count] = chicken;
        count ++;
        // 可以通知消费者消费了
        this.notifyAll();
    }

    // 消费者消费产品
    public synchronized Chicken pop() throws InterruptedException {
        // 判断能否消费
        if(count == 0){
            /// 等待生产者生产,消费者等待
            this.wait();
        }
        // 如果可以消费
        count --;
        Chicken chicken = chickens[count];
        // 吃完了,通知生产者生产
        this.notifyAll();

        return chicken;
    }
}

5.2.2 信号灯法

package com.thread.communication;

public class TestPC2 {
    public static void main(String[] args) {
        TV tv = new TV();
        new Player(tv).start();
        new Watcher(tv).start();
    }
}

// 生产者 --> 演员
class Player extends Thread{
    TV tv;
    public Player(TV tv){
        this.tv = tv;
    }

    @Override
    public void run() {
        for (int i = 0; i < 20; i++) {
            if (i % 2 == 0){
                this.tv.play("节目一:新闻联播");
            }else{
                this.tv.play("节目二:法治在线");
            }
        }
    }
}
// 消费者 --> 观众
class Watcher extends Thread{
    TV tv;
    public Watcher(TV tv){
        this.tv = tv;
    }

    @Override
    public void run() {
        for (int i = 0; i < 20; i++) {
            tv.watch();
        }
    }
}

// 产品 --> 节目
class TV{
    // 演员表演,观众等待 T
    // 观众观看,演员等待 F
    String voice; // 表演的节目
    boolean flag = true;
    // 表演
    public synchronized void play(String voice){

        if (!flag){
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }

        System.out.println("演员表演了:" + voice);
        // 通知观众观看
        this.notifyAll(); // 通知唤醒
        this.voice = voice;
        this.flag = !this.flag;
    }
    // 观看
    public synchronized void watch(){
        if (flag){
            try {
                this.wait();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
        }
        System.out.println("观看了:" + voice);
        // 通知演员表演
        this.notifyAll();
        this.flag = !this.flag;
    }
}

5.3、使用线程池

  • 背景:经常创建和销毁、使用量特别大的资源,比如并发情况下的线程,对性能影响很大。
  • 思路:提前创建好多个线程,放入线程池中,使用时直接获取,使用完放回池中。可以避免频繁创建销毁、实现重复利用。类似生活中的公共交通工具。
  • 优点:
    • 提高响应速度(减少了创建新线程的时间)
    • 降低资源消耗(重复利用线程池中线程,不需要每次都创建)
    • 便于线程管理…
      • corePoolSize:核心池的大小
      • maximumPoolSize:最大线程数
      • keepAliveTime:线程没有任务时最多保持多长时间会终止

JDK5.0起提供了线程池相关API:ExecutorServiceExecutors

  • ExecutorService:真正的线程池接口。常见子类ThreadPoolExecutor
  • void execute(Runnable command):执行任务/命令,没有返回值,一般用来执行Runnable
  • Future submit (Callable task):执行任务,有返回值,一般用来执行Callable
  • void shutdown():关闭连接池
  • Executors:工具类、线程池的工厂类,用于创建并返回不同类型的线程池

案例:

package com.thread.communication;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

//测试线程池
public class TestPool {
    public static void main(String[] args) {
        //1.创建服务,创建线程池
        ExecutorService service = Executors.newFixedThreadPool(10);

        //2.执行
        service.execute(new MyThread());
        service.execute(new MyThread());
        service.execute(new MyThread());
        service.execute(new MyThread());
        service.execute(new MyThread());

        //3.关闭链接
        service.shutdown();
    }

}


class MyThread implements Runnable {

    @Override
    public void run() {
        for (int i = 0; i < 100; i++) {
            System.out.println(Thread.currentThread().getName() + i);
        }
    }
}