内核链表

发布时间 2023-12-03 23:25:34作者: LX2020

内核链表在很多嵌入式的代码中都有用到,因为这个链表很好用,并且代码的统一性会增强代码的可读性,因此这里简单记录一下内核链表的使用,首先是库文件,这里也就是从内核中获取的,下面的代码做了一点注释。

#ifndef _LINUX_LIST_H
#define _LINUX_LIST_H

// include/linux/types.h
struct list_head
{
    struct list_head *next, *prev;
};

#define LIST_HEAD_INIT(name) \
    {                        \
        &(name), &(name)     \
    }

#define LIST_HEAD(name) \
    struct list_head name = LIST_HEAD_INIT(name)

// 初始化链表,前驱和后继都指向自己
static inline void INIT_LIST_HEAD(struct list_head *list)
{
    list->next = list;
    list->prev = list;
}

// 往链表插入节点内部方法 prv <=> new <=> next
static inline void __list_add(struct list_head *new,
                              struct list_head *prev,
                              struct list_head *next)
{

    next->prev = new;
    new->next = next;
    new->prev = prev;
    prev->next = new;
}

// 在head 节点插入 new 节点,head <=> new <=> head->next(利于堆栈实现)
static inline void list_add(struct list_head *new, struct list_head *head)
{
    __list_add(new, head, head->next);
}

// 在head 节点插入 new 节点,head->prev <=> new <=> head (利于队列实现)
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
    __list_add(new, head->prev, head);
}

// 删除节点内部方法
static inline void __list_del(struct list_head *prev, struct list_head *next)
{
    next->prev = prev;
    prev->next = next;
}

// 删除entry节点,并时prev = NULL
static inline void __list_del_clearprev(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
    entry->prev = NULL;
}
// 删除entry节点
static inline void __list_del_entry(struct list_head *entry)
{
    __list_del(entry->prev, entry->next);
}

// 删除entry节点, 使entry->next,prev 为null (在Linux内部为非法值,访问产生缺页中断)
static inline void list_del(struct list_head *entry)
{
    __list_del_entry(entry);
    entry->next = NULL;
    entry->prev = NULL;
}

// new 节点 替换 old 节点
static inline void list_replace(struct list_head *old, struct list_head *new)
{
    new->next = old->next;
    new->next->prev = new;
    new->prev = old->prev;
    new->prev->next = new;
}

// new 节点 替换 old 节点,并初始化 old
static inline void list_replace_init(struct list_head *old, struct list_head *new)
{
    list_replace(old, new);
    INIT_LIST_HEAD(old);
}

// 交换两个节点位置
static inline void list_swap(struct list_head *entry1, struct list_head *entry2)
{
    struct list_head *pos = entry2->prev;

    list_del(entry2);
    list_replace(entry1, entry2);
    if (pos == entry1)
        pos = entry2;
    list_add(entry1, pos);
}

// 删除entry节点,并初始化entry
static inline void list_del_init(struct list_head *entry)
{
    __list_del_entry(entry);
    INIT_LIST_HEAD(entry);
}

// 删除list 节点,并将其添加到head节点后
static inline void list_move(struct list_head *list, struct list_head *head)
{
    __list_del_entry(list);
    list_add(list, head);
}

// 删除list 节点,并将其添加到head节点前
static inline void list_move_tail(struct list_head *list, struct list_head *head)
{
    __list_del_entry(list);
    list_add_tail(list, head);
}

// 确定MEMBER 成员在TYPE 结构体的偏移量
#define offsetof(TYPE, MEMBER) ((size_t) & ((TYPE *)0)->MEMBER)

// 知道type 结构体的 member 成员指针 ptr, 获取该结构体的指针
#define container_of(ptr, type, member) ({                      \
	const typeof( ((type *)0)->member ) *__mptr = (ptr);    \
	(type *)( (char *)__mptr - offsetof(type,member) ); })

#define list_entry(ptr, type, member) container_of(ptr, type, member)

// 从链表ptr头 获取第一个元素
#define list_first_entry(ptr, type, member) list_entry((ptr)->next, type, member)
// 从链表ptr头 获取最后一个元素
#define list_last_entry(ptr, type, member) list_entry((ptr)->prev, type, member)

// 从链表ptr头 获取第一个元素,如果链表如空返回 NULL
#define list_first_entry_or_null(ptr, type, member) ({        \
    struct list_head *head__ = (ptr);                         \
    struct list_head *pos__ = READ_ONCE(head__->next);        \
    pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
})

// 从结构体pos 获取下一个元素
#define list_next_entry(pos, member) \
    list_entry((pos)->member.next, typeof(*(pos)), member)

// 从结构体pos 获取前一个元素
#define list_prev_entry(pos, member) \
    list_entry((pos)->member.prev, typeof(*(pos)), member)

// 链表节点遍历,从表头head开始,逐项向后(next方向)移动pos,直至又回到head,基于列表不变的基础上
#define list_for_each(pos, head) \
    for (pos = (head)->next; pos != (head); pos = pos->next)

// 在当前pos 节点继续遍历
#define list_for_each_continue(pos, head) \
    for (pos = pos->next; pos != (head); pos = pos->next)

// 在当前pos 节点往前遍历
#define list_for_each_prev(pos, head) \
    for (pos = (head)->prev; pos != (head); pos = pos->prev)

// 安全遍历一个链表,通过传入两个参数pos,n 可以在链表中删除pos
#define list_for_each_safe(pos, n, head)                   \
    for (pos = (head)->next, n = pos->next; pos != (head); \
         pos = n, n = pos->next)

#define list_for_each_prev_safe(pos, n, head) \
    for (pos = (head)->prev, n = pos->prev;   \
         pos != (head);                       \
         pos = n, n = pos->prev)

#define list_entry_is_head(pos, head, member) \
    (&pos->member == (head))

// 遍历链表,但是获得是结构体
#define list_for_each_entry(pos, head, member)               \
    for (pos = list_first_entry(head, typeof(*pos), member); \
         !list_entry_is_head(pos, head, member);             \
         pos = list_next_entry(pos, member))

// 反向遍历链表
#define list_for_each_entry_reverse(pos, head, member)      \
    for (pos = list_last_entry(head, typeof(*pos), member); \
         !list_entry_is_head(pos, head, member);            \
         pos = list_prev_entry(pos, member))

// 以安全的方式遍历链表
#define list_for_each_entry_safe(pos, n, head, member)       \
    for (pos = list_first_entry(head, typeof(*pos), member), \
        n = list_next_entry(pos, member);                    \
         !list_entry_is_head(pos, head, member);             \
         pos = n, n = list_next_entry(n, member))

#endif

下面是一个简单的例子说明内核链表的使用

#include <stdio.h>
#include <stdlib.h>
#include "kernel_list.h"


struct student
{
	int num;
	struct list_head mylist; /*定义的时候要记上这一段*/
};

int main()
{
    struct student *head = malloc(sizeof(struct student));/*创建头结点*/
    INIT_LIST_HEAD(&(head->mylist));/*初始化链表*/

    struct student *mynewnode = malloc(sizeof(struct student));
    mynewnode->num = 2;
    struct student *mynewnode1 = malloc(sizeof(struct student));
    mynewnode1->num = 3;
    
    list_add(&(mynewnode->mylist), &(head->mylist)); /*添加节点*/
    list_add(&(mynewnode1->mylist), &(head->mylist));

    /*拿到第二个节点*/
    struct student *node = list_entry(head->mylist.next->next, struct student, mylist);
    printf("第二个节点 %d\n", node->num);

    struct student *pos;
    list_for_each_entry(pos, &(head->mylist), mylist) /*遍历节点*/
    {
        printf("num %d\n", pos->num);
    }

    exit(0);
}

运行结果如下