m分别使用BP神经网络和GRNN网络进行时间序列预测matlab仿真

发布时间 2023-03-25 16:03:48作者: 我爱C编程

1.算法描述

        广义回归神经网络是径向基神经网络的一种,GRNN具有很强的非线性映射能力和学习速度,比RBF具有更强的优势,网络最后普收敛于样本量集聚较多的优化回归,样本数据少时,预测效果很好,还可以处理不稳定数据。虽然GRNN看起来没有径向基精准,但实际在分类和拟合上,特别是数据精准度比较差的时候有着很大的优势。

 

       GRNNRBF的一种改进,结构相似。区别就在于多了一层求和层,而去掉了隐含层与输出层的权值连接(对高斯权值的最小二乘叠加)。

 

 

 

 

1.输入层为向量,维度为m,样本个数为n,线性函数为传输函数。

 

2.隐藏层与输入层全连接,层内无连接,隐藏层神经元个数与样本个数相等,也就是n,传输函数为径向基函数。

 

3.加和层中有两个节点,第一个节点为每个隐含层节点的输出和,第二个节点为预期的结果与每个隐含层节点的加权和。

 

4.输出层输出是第二个节点除以第一个节点。

 

        GRNN神经网络中,一旦确立了学习样本数据后,只需要调整一个参数“光滑因子”即可确定其网络结构和权值,因此训练GRNN网络要比传统的神经网络更加便捷。所以选择GRNN

————————————————

 

       BP神经网络的网络层包括输入层,隐含层和输出层三个网络层次,其基本结构如下图所示:

 

 

 

 

基于三层网络结构的BP神经网络具有较为广泛的应用场合和训练效果。

 

        BP神经网络中,隐含层数量对神经网络的性能有着至关重要的影响,如果隐含层数量过多,会大大增加BP神经网络的内部结构的复杂度,从而降低学习效率,增加训练时间;如果隐含层数量过少,则无法精确获得训练输入数据和输出结果之间的内在规律,增加预测误差。因此,选择合适的隐含层个数具有十分重要的意义。由于隐含层个数的设置没有明确的理论可以计算,通常情况下,采用逐次分析的方法获得,即通过对不同隐含层所对应的神经网络进行预测误差的仿真分析,选择误差最小情况下所对应的隐含层个数。

 

        学习率,即网络权值得更新速度,当学习率较大的时候,网络权值的更新速度快,当网络稳定性会下降;当学习率较小的时候,网络权值的更新速度慢,网络较为稳定。这里选择BP神经网络的学习率方式参考上一章节隐含层的选择方式,即通过对比不同学习率的网络训练误差,选择性能较优的学习率。

 

       BP神经网络的初始网络权值对网络训练的效率以及预测性能有着较大的影响,通常情况下,采用随机生成[-11]之间的随机数作为BP神经网络的初始权值。

————————————————

 

2.仿真效果预览

matlab2022a仿真结果如下:

 

 

 

 

 

 

 

 

    可以看到,蓝色的是原始的数据,红色的我们的预测输出,前面几个年份,由于有已知数据,所以可以对比,可以看到,BP神经网络会存在的一定的误差。而GRNN则误差非常小。

 

误差具体数值,新改的程序有输出的,结果如下:

 

BP:

 

 

 

 

GRNN:

 

 

 

 

因此,通过上述过程可知,GRNN神经网络具有更好的预测结果。

 

3.MATLAB核心程序

 

SAFE10=[1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1];
 
%GRNN神经网络训练
char    = [D]';
T       = [SAFE];
Net     = newgrnn(char,T,25);
save Grnn.mat Net;
 
%%
%通过拟合的方法,得到未来的指标的数据
X0=Time';
%设置预测年份
X1=[Time,2016,2017,2018,2019,2020];
 
Y1=D(:,1);
Y2=D(:,2);
Y3=D(:,3);
Y4=D(:,4);
Y5=D(:,5);
Y6=D(:,6);
Y7=D(:,7);
Y8=D(:,8);
Y9=D(:,9);
Y10=D(:,10);
Y11=D(:,11);
Y12=D(:,12);
Y13=D(:,13);
Y14=D(:,14);
Y15=D(:,15);
 
%开始拟合
p=polyfit(X0,Y1,5);Y1_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);
p=polyfit(X0,Y2,5);Y2_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);
p=polyfit(X0,Y3,5);Y3_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);
p=polyfit(X0,Y4,5);Y4_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);
 
p=polyfit(X0,Y5,5);Y5_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y6,5);Y6_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y7,5);Y7_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y8,5);Y8_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
 
p=polyfit(X0,Y9,5);Y9_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y10,5);Y10_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y11,5);Y11_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y12,5);Y12_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
 
p=polyfit(X0,Y13,5);Y13_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y14,5);Y14_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;
p=polyfit(X0,Y15,5);Y15_=p(1)*X1.^5+p(2)*X1.^4+p(3)*X1.^3+p(4)*X1.^2+p(5)*X1.^1+p(6);;