AtCoder Regular Contest 162 E Strange Constraints

发布时间 2023-06-21 08:49:40作者: zltzlt

洛谷传送门

AtCoder 传送门

完全没有思路。但是其实不难的。

\(d_i\)\(i\)\(B\) 中的出现次数,题目要求:

  • \(\forall i \in [1, n], d_i \le A_i\)
  • 对于位置 \(i\)\(d_j \le A_i\) 的数 \(j\) 可以被放到 \(B_i\)

考虑按照 \(d_i\) 从大到小 dp。设 \(f_{i, j, k}\) 为,考虑到出现次数 \(\ge i\) 的数,这些数一共有 \(j\) 个,总共出现了 \(k\) 次。

\(C_i = \sum\limits_{j = 1}^n [A_j \ge i]\)\(f_{i + 1} \to f_i\) 时,考虑枚举 \(x\) 个数出现了 \(i\) 次,那么这 \(x\) 个数有 \(\binom{C_i - j}{x}\) 种方案被确定。要把它们填进 \(B\) 中,有 \(\frac{(C_i - k)!}{(\prod\limits_{y = 1}^x i!) \times (C_i - k - ix)}\) 种方案(其实是一个多重组合数)。那么转移式子就是:

\[f_{i, j + x, k + ix} \gets f_{i + 1, j, k} \times \binom{C_i - j}{x} \times \frac{(C_i - k)!}{(\prod\limits_{y = 1}^x i!) \times (C_i - k - ix)} \]

注意到 \(j\)\(x\) 的上界最大是 \(\left\lfloor\frac{n}{i}\right\rfloor\) 的,所以时间复杂度其实是 \(O(n^3)\)

code
// Problem: E - Strange Constraints
// Contest: AtCoder - AtCoder Regular Contest 162
// URL: https://atcoder.jp/contests/arc162/tasks/arc162_e
// Memory Limit: 1024 MB
// Time Limit: 3000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))

using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef double db;
typedef long double ldb;
typedef pair<ll, ll> pii;

const int maxn = 510;
const ll mod = 998244353;

inline ll qpow(ll b, ll p) {
	ll res = 1;
	while (p) {
		if (p & 1) {
			res = res * b % mod;
		}
		b = b * b % mod;
		p >>= 1;
	}
	return res;
}

ll n, a[maxn], b[maxn], fac[maxn], ifac[maxn];
int f[maxn][maxn][maxn];

inline ll C(ll n, ll m) {
	if (n < m || n < 0 || m < 0) {
		return 0;
	} else {
		return fac[n] * ifac[m] % mod * ifac[n - m] % mod;
	}
}

inline void upd(int &x, int y) {
	x += y;
	(x >= mod) && (x -= mod);
}

void solve() {
	scanf("%lld", &n);
	fac[0] = 1;
	for (int i = 1; i <= n; ++i) {
		scanf("%lld", &a[i]);
		++b[a[i]];
		fac[i] = fac[i - 1] * i % mod;
	}
	ifac[n] = qpow(fac[n], mod - 2);
	for (int i = n - 1; ~i; --i) {
		ifac[i] = ifac[i + 1] * (i + 1) % mod;
	}
	for (int i = n; i; --i) {
		b[i] += b[i + 1];
	}
	f[n + 1][0][0] = 1;
	for (int i = n; i; --i) {
		for (int j = 0; (i + 1) * j <= n && j <= b[i + 1]; ++j) {
			for (int k = 0; k <= b[i + 1]; ++k) {
				if (!f[i + 1][j][k]) {
					continue;
				}
				ll pw = 1;
				for (int x = 0; j + x <= n && k + i * x <= b[i]; ++x) {
					upd(f[i][j + x][k + i * x], f[i + 1][j][k] * C(b[i] - j, x) % mod * fac[b[i] - k] % mod * ifac[b[i] - k - i * x] % mod * pw % mod);
					pw = pw * ifac[i] % mod;
				}
			}
		}
	}
	int ans = 0;
	for (int i = 0; i <= b[1]; ++i) {
		upd(ans, f[1][i][n]);
	}
	printf("%d\n", ans);
}

int main() {
	int T = 1;
	// scanf("%d", &T);
	while (T--) {
		solve();
	}
	return 0;
}