403.青蛙过河

发布时间 2023-06-13 16:46:20作者: zwyyy456

问题描述

403. 青蛙过河 (Hard)

一只青蛙想要过河。 假定河流被等分为若干个单元格,并且在每一个单元格内都有可能放有一块石子(也有可能没有)。 青蛙可以跳上石子,但是不可以跳入水中。

给你石子的位置列表 stones(用单元格序号 升序 表示), 请判定青蛙能否成功过河(即能否在最后一步跳至最后一块石子上)。开始时, 青蛙默认已站在第一块石子上,并可以假定它第一步只能跳跃 1 个单位(即只能从单元格 1 跳至单元格 2 )。

如果青蛙上一步跳跃了 k 个单位,那么它接下来的跳跃距离只能选择为 k - 1kk + 1 个单位。 另请注意,青蛙只能向前方(终点的方向)跳跃。

示例 1:

输入:stones = [0,1,3,5,6,8,12,17]
输出:true
解释:青蛙可以成功过河,按照如下方案跳跃:跳 1 个单位到第 2 块石子, 然后跳 2 个单位到第 3 块石子, 接着
跳 2 个单位到第 4 块石子, 然后跳 3 个单位到第 6 块石子, 跳 4 个单位到第 7 块石子, 最后,跳 5
个单位到第 8 个石子(即最后一块石子)。

示例 2:

输入:stones = [0,1,2,3,4,8,9,11]
输出:false
解释:这是因为第 5 和第 6 个石子之间的间距太大,没有可选的方案供青蛙跳跃过去。

提示:

  • 2 <= stones.length <= 2000
  • 0 <= stones[i] <= 2³¹ - 1
  • stones[0] == 0
  • stones 按严格升序排列

解题思路

记忆化搜索

我们考虑dfs(i, k)表示从第i个石子跳k步,之后能否到达终点;

  • 如果从第i个石子跳k步,不能到达另一个石子,return false;
  • 否则,记从第i个石子跳k步到达的新石头的索引为new_idx,那么只要从new_idxk + 1, k, k - 1任意一步能到达终点,则dfs(i, k)返回的结果为true

边界条件if (idx == stones.size() - 1) return true;,同时k不能为0, 为0则return false;

动态规划

dp[i][k]为到达从上一个石子处跳k个单位到达第i个石子(注意这里的上一个石子并不一定是第i - 1石子,而是stones[i] - k位置对应的的石子,记该索引为pre_idx = ump[stones[i] - k]),对应的状态转移方程为: dp[i] = dp[pre_idx][k] || dp[pre_idx][k - 1] || dp[pre_idx][k + 1];,这里dp[i][k]应该初始化为false, 同时dp[0][0] = true;

bfs

其实就是记忆化搜索的翻版,visited数组变成vector<vector<bool>> visited(stones.size(), vector<bool>(stones.size() + 1, false));,分别表示石子坐标和到达该坐标的步数;

注意pair入队时,要更新visited数组

bfs

代码

记忆化搜索

class Solution {
  public:
    bool dfs(int start_idx, int mv_step, vector<int> &stones, unordered_map<int, int> &ump, vector<vector<int>> &cache) {
        if (start_idx == stones.size() - 1) {
            return true; // ?这里不确定
        }
        if (mv_step <= 0) {
            return false;
        }
        if (ump.find(stones[start_idx] + mv_step) != ump.end()) {
            if (cache[start_idx][mv_step] > -1)
                return cache[start_idx][mv_step];
            int new_idx = ump[stones[start_idx] + mv_step];
            cache[start_idx][mv_step] = dfs(new_idx, mv_step - 1, stones, ump, cache) || dfs(new_idx, mv_step, stones, ump, cache) || dfs(new_idx, mv_step + 1, stones, ump, cache);
            return cache[start_idx][mv_step];
        }
        return false;
    }
    bool canCross(vector<int> &stones) {
        // 尝试记忆化搜索的写法
        unordered_map<int, int> ump;
        for (int i = 0; i < stones.size(); ++i) {
            ump[stones[i]] = i;
        }
        vector<vector<int>> cache(stones.size(), vector<int>(stones.size() + 1, -1));
        return dfs(0, 1, stones, ump, cache);
    }
};

动态规划

class Solution {
  public:
    bool canCross(vector<int> &stones) {
        unordered_map<int, int> ump;
        for (int i = 0; i < stones.size(); ++i) {
            ump[stones[i]] = i;
        }
        // 跳了k步,到达stones[i], dp[i][k];
        vector<vector<bool>> dp(stones.size(), vector<bool>(stones.size() + 1, false));
        dp[0][0] = true;
        for (int i = 1; i < stones.size(); ++i) {
            for (int k = 1; k <= i; ++k) {
                if (ump.find(stones[i] - k) != ump.end()) {
                    int pre_idx = ump[stones[i] - k];
                    dp[i][k] = dp[pre_idx][k] || dp[pre_idx][k - 1] || dp[pre_idx][k + 1];
                }
            }
        }
        for (int k = 1; k < stones.size(); ++k) {
            if (dp[stones.size() - 1][k]) {
                return true;
            }
        }
        return false;
    }
};

bfs

class Solution {
  public:
    bool canCross(vector<int> &stones) {
        if (stones[1] > 1) {
            return false;
        }
        vector<vector<bool>> visited(stones.size(), vector<bool>(stones.size() + 1, false));
        visited[1][1] = true;
        unordered_map<int, int> ump;
        for (int i = 0; i < stones.size(); ++i) {
            ump[stones[i]] = i;
        }
        queue<pair<int, int>> q;
        q.push({1, 1});
        while (!q.empty()) {
            auto [idx, mv_step] = q.front();
            q.pop();
            if (idx == stones.size() - 1)
                return true;
            for (int i = mv_step + 1; i > 0 && i >= mv_step - 1; --i) {
                if (ump.find(stones[idx] + i) != ump.end()) {
                    int new_idx = ump[stones[idx] + i];
                    if (visited[new_idx][i] == false) { // 说明这个点没有被访问过
                        visited[new_idx][i] = true;
                        q.push({new_idx, i});
                    }
                }
            }
        }
        return false;
    }
};