6.3.2—6.3.4 平面向量的坐标运算

发布时间 2023-05-04 12:02:58作者: 贵哥讲高中数学

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高一数学同步精品讲义与分层练习(人教A版2019)]
(https://www.zxxk.com/docpack/2921718.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第二册同步巩固,难度2颗星!

基础知识

正交分解及其坐标表示

① 正交分解
把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解;
image.png
如上图,重力\(G\)分解成平行斜面的力\(F_1\)和垂直于斜面的压力\(F_2\).
② 向量的坐标表示
在平面内建立直角坐标系,以与\(x\)轴、\(y\)轴方向相同的两个单位向量 \(\vec{i}\)\(\vec{j}\)为基底,则平面内的任一向量\(\vec{a}\)可表示为\(\vec{a}=x \vec{i}+y \vec{j}=(x, y)\)
\((x ,y)\)称为向量\(\vec{a}\)的坐标,\(\vec{a}=(x, y)\)叫做向量\(\vec{a}\)的坐标表示.
向量\(\vec{a}=(x, y)\),可看成以原点为起点,点\((x ,y)\)为终点的向量.
image.png
【例】如下图,用基底\(\{\vec{i}, \vec{j}\}\)表示向量\(\overrightarrow{A B}\),并求出坐标.
image.png
**解 ** \(\overrightarrow{A B}=\overrightarrow{A A_1}+\overrightarrow{A A_2}=2 \vec{i}+\vec{j}\),所以\(\overrightarrow{A B}=(2,1)\).

平面向量的坐标运算

\(\vec{a}=\left(x_1, y_1\right)\)\(\vec{b}=\left(x_2, y_2\right)\),则
(1) 向量的模 \(|\vec{a}|=\sqrt{x_1^2+y_1^2}\)
(2) 向量的加减法运算 \(\vec{a}+\vec{b}=\left(x_1+x_2, y_1+y_2\right)\)\(\vec{a}-\vec{b}=\left(x_1-x_2, y_1-y_2\right)\)
(3) 若\(A(x_1 ,y_1)\)\(B(x_2 ,y_2)\),则 \(\overrightarrow{A B}=\left(x_2-x_1, y_2-y_1\right)\)
(4) 实数与向量的积 \(\lambda \vec{a}=\lambda\left(x_1, y_1\right)=\left(\lambda x_1, \lambda y_1\right)\)
拓展 定比分点
线段\(P_1 P_2\)的端点\(P_1\)\(P_2\)的坐标分别是\((x_1 ,y_1)\)\((x_2 ,y_2)\),点\(P\)是直线\(P_1 P_2\)上的一点,
\(\overrightarrow{P_1 P}=\lambda \overrightarrow{P P_2}\)时,点\(P\)的坐标是 \(\left(\frac{x_1+\lambda x_2}{1+\lambda} , \frac{y_1+\lambda y_2}{1+\lambda}\right)\).
image.png
【例】\(\vec{a}=(-4,3)\)\(\vec{b}=(2,5)\),求 \(|\vec{a}|\)\(2 \vec{b}-3 \vec{a}\).
\(|\vec{a}|=\sqrt{(-4)^2+3^2}=5\)\(2 \vec{b}-3 \vec{a}=(4,10)-(-12,9)=(16,1)\).

平行向量

\(\vec{a}(x_1 ,y_1)\)\(\vec{b}(x_2 ,y_2)\),其中\(\vec{b}≠\vec{0}\),则\(\vec{a}∥\vec{b} ⇔ x_1 y_2=x_2 y_1\).
证明 \(\vec{a}∥\vec{b}\)的充要条件是存在实数\(λ\),使得\(\vec{a}=λ\vec{b}\),所以\((x_1 ,y_1)=λ(x_2 ,y_2)\)
所以\(\left\{\begin{array}{l} x_1=\lambda x_2 \\ y_1=\lambda y_2 \end{array}\right.\),消\(λ\)\(x_1 y_2=x_2 y_1\).

【例】已知\(\vec{a}=(4,2)\)\(\vec{b}=(2,m)\),且\(\vec{a}||\vec{b}\),求\(m\).
\(∵\vec{a}||\vec{b}\)\(∴4m=4\),解得\(m=1\).

基本方法

【题型1】 平面向量的坐标运算

【典题1】 已知向量\(\vec{a}=(2,1)\)\(\vec{b}=(-1,k)\),若存在实数\(λ\),使得\(\vec{a}=λ\vec{b}\),则\(k\)\(λ\)的值分别为( )
A.\(-\frac{1}{2},-2\) B. \(\frac{1}{2},-2\) C.\(-\frac{1}{2}, 2\) D.\(\frac{1}{2}, 2\)
解析 \(∵\vec{a}=λ\vec{b}\)\(∴(2,1)=(-λ,kλ)\)
\(\therefore\left\{\begin{array}{l} -\lambda=2 \\ k \lambda=1 \end{array}\right.\),解得\(λ=-2\)\(k=-\frac{1}{2}\)
故选:\(A\)
点拨 实数与向量的积\(λ\vec{a}=λ(x_1 ,y_1)=(λx_1 ,λy_1)\).

【典题2】已知向量\(\vec{a}\)\(\vec{b}\)满足\(2\vec{a}-\vec{b}=(0,3)\)\(\vec{a}-2\vec{b}=(-3,0)\)\(λ\vec{a}+μ\vec{b}=(-1,1)\),则\(λ+μ=\)( )
A.\(-1\) B.\(0\) C.\(1\) D.\(2\)
解析 \(∵2\vec{a}-\vec{b}=(0,3)\),则\(4\vec{a}-2\vec{b}=(0,6)\),①,
\(\vec{a}-2\vec{b}=(-3,0)\),②,
由① ②得:\(3\vec{a}=(3,6)\),即\(\vec{a}=(1,2)\)
同理,\(\vec{b}=(2,1)\)
\(λ\vec{a}+μ\vec{b}=(λ+2μ,2λ+μ)=(-1,1)\)
\(\left\{\begin{array}{l} \lambda+2 \mu=-1 \\ 2 \lambda+\mu=1 \end{array}\right.\),得\(\left\{\begin{array}{l} \lambda=1 \\ \mu=-1 \end{array}\right.\)
\(λ+μ=1+(-1)=0\)
故答案为:\(B\)
点拨\(2\vec{a}-\vec{b}=(0,3)\)\(\vec{a}-2\vec{b}=(-3,0)\)\(\vec{a}\)\(\vec{b}\)的坐标类似解一个二元一次方程.

【巩固练习】

1.设向量\(\vec{a}=(1,1)\)\(\vec{b}=(3,-2)\),则\(3\vec{a}-2\vec{b}\)=( )
A.\((-3,7)\) B.\((0,7)\) C.\((3,5)\) D.\((-3,5)\)

2.已知点\(A(0,3)\)\(B(-1,2)\),且\(\overrightarrow{B C}=(3,-4)\),则 \(\overrightarrow{A C}=\) ( )
A.\((2,5)\) B.\((2,-5)\) C.\((-2,-5)\) D.\((-2,5)\)

3.已知向量\(\vec{a}=(1,2)\)\(\vec{b}=(2,3)\)\(\vec{c}=(3,4)\),若\(\vec{c}=λ\vec{a}+μ\vec{b}\),则\(λ+μ=\) ( )
A.\(1\) B.\(-1\) C.\(-2\) D.\(3\)

参考答案

  1. 答案 \(A\)
    解析 \(\vec{a}=(1,1)\)\(\vec{b}=(3,-2)\)
    \(3\vec{a}-2\vec{b}=(3,3)-(6,-4)=(-3,7)\)
    故选:\(A\)
  2. 答案 \(B\)
    解析 \(\because\)\(A(0,3)\)\(B(-1,2)\),且\(\overrightarrow{B C}=(3,-4)\)
    \(\therefore \overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}=(-1,-1)+(3,-4)=(2,-5)\)
    故选:\(B\)
  3. 答案 \(A\)
    解析\(\vec{c}=λ\vec{a}+μ\vec{b}=(λ,2λ)+(2μ,3μ)=(λ+2μ,2λ+3μ)=(3,4)\)
    所以\(λ+2μ=3\)\(2λ+3μ=4\),解得\(λ=-1\)\(μ=2\),所以\(λ+μ=1\)
    故选:\(A\)

【题型2】 平行向量

【典题1】 已知向量\(\vec{a}=(-1,2)\)\(\vec{b}=(1,-2λ)\),若\((\vec{a}+3\vec{b})||(\vec{a}-\vec{b})\),则实数\(λ\)的值为( )
A.\(1\) B.\(0\) C. \(\frac{4}{3}\) D. \(-\frac{2}{3}\)
解析 根据题意,向量\(\vec{a}=(-1,2)\)\(\vec{b}=(1,-2λ)\)
\(\vec{a}+3\vec{b}=(2,2-6λ)\)\(\vec{a}-\vec{b}=(-2,2+2λ)\)
\((\vec{a}+3\vec{b})||(\vec{a}-\vec{b})\),则\(2(2+2λ)=-2×(2-6λ)\),解可得:\(λ=1\)
故选:\(A\)
**点拨 ** 若\(\vec{a}(x_1 ,y_1)\)\(\vec{b}(x_2 ,y_2)\),其中\(\vec{b}≠\vec{0}\),则\(\vec{a}∥\vec{b} ⇔ x_1 y_2=x_2 y_1\).

【典题2】已知点\(A(-1,-1)\)\(B(1,3)\)\(C(x,5)\),若对于平面上任意一点\(O\),都有\(\overrightarrow{O C}=\lambda \overrightarrow{O A}+(1-\lambda) \overrightarrow{O B}\)\(λ∈R\),则\(x=\)   .
解析 \(\because A(-1,-1)\)\(B(1,3)\)\(C(x,5)\),且对于平面上任意一点\(O\),都有\(\overrightarrow{O C}=\lambda \overrightarrow{O A}+(1-\lambda) \overrightarrow{O B}\)\(λ∈R\)
\(\therefore A\)\(B\)\(C\)三点共线,即\(\overrightarrow{A B}\)\(\overrightarrow{A C}\)共线,
\(\because \overrightarrow{A B}=(2,4)\)\(\overrightarrow{A C}=(x+1,6)\)
,解得:\(x=2\)
故答案为:\(2\)

【巩固练习】

1.已知平面向量\(\vec{a}\)\(\vec{b}\)满足\(\vec{a}=(-2,1)\)\(|\vec{b}|=3 \sqrt{5}\)\(\vec{a}\)\(\vec{b}\)方向相同,则\(\vec{b}\)的坐标是( )
A.\((3,-6)\) B.\((6,-3)\) C.\((-6,3)\) D.\((-3,6)\)

2.已知向量\(\vec{m}=(\sqrt{3}, 2 \cos \theta+1)\)\(\vec{n}=(1,2 \sin \theta)\),且 \(\vec{m} / / \vec{n}\),则 \(\sin \left(\theta-\frac{\pi}{6}\right)=\)  .

3.已知向量\(\vec{a}=(3,-2)\)\(\vec{b}=(x,y-1)\)\(\vec{a}||\vec{b}\),若\(x\)\(y\)均为正数,则 \(\frac{3}{x}+\frac{2}{y}\)的最小值是  .

参考答案

  1. 答案 \(C\)
    解析 已知平面向量\(\vec{a}\)\(\vec{b}\)满足\(\vec{a}=(-2,1)\)\(|\vec{b}|=3 \sqrt{5}\)\(\vec{a}\)\(\vec{b}\)方向相同,
    \(\vec{b}=(-2λ,λ)\),其中\(λ>0\)
    \((-2 \lambda)^2+\lambda^2=45\),即\(λ=3\),即\(\vec{b}=(-6,3)\)
    故选:\(C\)
  2. **答案 ** \(\frac{1}{4}\)
    解析 \(\because \vec{m} / / \vec{n}\)
    \(\therefore 2 \sqrt{3} \sin \theta-2 \cos \theta-1=4 \sin \left(\theta-\frac{\pi}{6}\right)-1=0\),解得 \(\sin \left(\theta-\frac{\pi}{6}\right)=\frac{1}{4}\)
    故答案为:\(\frac{1}{4}\)
  3. 答案 \(8\)
    解析 \(\because \vec{a}||\vec{b}\)\(\therefore -2x-3(y-1)=0\),化简得\(2x+3y=3\)
    \(\therefore \frac{3}{x}+\frac{2}{y}=\left(\frac{3}{x}+\frac{2}{y}\right) \times \frac{1}{3}(2 x+3 y)=\frac{1}{3}\left(6+\frac{9 y}{x}+\frac{4 x}{y}+6\right)\)\(\geqslant \frac{1}{3}\left(12+2 \sqrt{\frac{9 y}{x} \cdot \frac{4 x}{y}}\right)=8\)
    当且仅当 \(2 x=3 y=\frac{3}{2}\)时,等号成立;
    \(\therefore \frac{3}{x}+\frac{2}{y}\)的最小值是\(8\)

【题型3】平面向量的坐标运用

【典题1】 平面上有\(A(2,1)\)\(B(-1,4)\)\(D(-2,3)\)三点,点\(C\)在直线\(AB\)上,且\(\overrightarrow{A C}=2 \overrightarrow{B C}\),连接\(DC\)并延长\(DC\)\(E\),使 \(|\overrightarrow{C E}|=\frac{1}{2}|\overrightarrow{C D}|\),则点E的坐标为( )
A.\((-5,9)\) B.\((-3,9)\) C.\((-1,4)\) D.\((-3,7)\)
解析 因为\(A(2,1)\)\(B(-1,4)\)\(D(-2,3)\)三点,点\(C\)在直线\(AB\)上,且\(\overrightarrow{A C}=2 \overrightarrow{B C}\)
所以\(B\)\(AC\)的中点,则\(C(-4,7)\)
连接\(DC\)并延长\(DC\)\(E\),使\(|\overrightarrow{C E}|=\frac{1}{2}|\overrightarrow{C D}|\),即 \(\overrightarrow{C E}=-\frac{1}{2} \overrightarrow{C D}\)
\(E(x,y)\),则 \((x+4, y-7)=-\frac{1}{2}(2,-4)\)
\(\left\{\begin{array}{l} x+4=-1 \\ y-7=2 \end{array}\right.\),解得\(\left\{\begin{array}{l} x=-5 \\ y=9 \end{array}\right.\)
所以点\(E\)的坐标为\((-5,9)\)
故选:\(A\)
image.png
点拨 求点\(E\)的坐标使用待定系数法.

【典题2】已知直角梯形\(ABCD\)中,\(AD⊥AB\)\(AB=2AD=2CD\),过点\(C\)\(CE⊥AB\),垂足为点\(E\)\(M\)\(CE\)的中点,用向量的方法证明:
(1)\(DE||BC\);(2)\(D\)\(M\)\(B\)三点共线.
解析 (1)证明:如图,以\(E\)为原点,\(AB\)所在直线为\(x\)轴,\(EC\)所在直线为\(y\)轴建立平面直角坐标系,
\(|\overrightarrow{A D}|=1\),则 \(|\overrightarrow{D C}|=1\)\(|\overrightarrow{A B}|=2\)
因为\(CE⊥AB\)\(AD⊥AB\)\(CD||AB\)\(AD=DC\)
易知四边形\(AECD\)为正方形.
所以可求得各点坐标分别为\(E(0,0)\)\(B(1,0)\)\(C(0,1)\)\(D(-1,1)\)\(A(-1,0)\)
因为\(\overrightarrow{E D}=(-1,1)-(0,0)=(-1,1)\)\(\overrightarrow{B C}=(0,1)-(1,0)=(-1,1)\)
所以\(\overrightarrow{E D}=\overrightarrow{B C}\),所以\(\overrightarrow{E D} / / \overrightarrow{B C}\)
\(ED\)\(BC\)无公共点,所以\(DE||BC\)
(2)证明:连接\(MB\)\(MD\)
因为\(M\)\(CE\)的中点,所以\(M\left(0, \frac{1}{2}\right)\)
所以\(\overrightarrow{M D}=(-1,1)-\left(0, \frac{1}{2}\right)=\left(-1, \frac{1}{2}\right)\)\(\overrightarrow{M B}=(1,0)-\left(0, \frac{1}{2}\right)=\left(1,-\frac{1}{2}\right)\)
所以\(\overrightarrow{M D}=-\overrightarrow{M B}\),所以 \(\overrightarrow{M D} / / \overrightarrow{M B}\)
\(MD\)\(MB\)有公共点\(M\),所以\(D\)\(M\)\(B\)三点共线.
image.png
**点拨 **感受下向量法对于处理几何问题的威力,建系利用向量的坐标表示有时候往往使得问题更简便.

【巩固练习】

1.已知\(O\)是坐标原点,点\(A\)在第二象限,\(|\overrightarrow{O A}|=2\)\(\angle x O A=150^{\circ}\),求向量\(\overrightarrow{O A}\)的坐标为   .

2.已知平行四边形\(ABCD\)的三个顶点\(A\)\(B\)\(C\)的坐标分别是\((-2,1)\)\((-1,3)\)\((3,4)\),则向量 \(\overrightarrow{B D}\)的坐标是  .

  1. 已知对任意平面向量\(\overrightarrow{A B}=(x, y)\),把\(\overrightarrow{A B}\)绕其起点沿逆时针方向旋转\(θ\)角得到向量\(\overrightarrow{A P}=(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)\).如图所示,顶角\(∠Q=120^∘\)的等腰三角形\(PQR\)的顶点\(P\)\(Q\)的坐标分别为\(P(1,0)\)\(Q(3, \sqrt{3})\),则顶点\(R\)的坐标为    .
    image.png

4.如图,在直角梯形\(ABCD\)中,\(AB||DC\)\(AD⊥DC\)\(AD=DC=2AB\)\(E\)\(AD\)的中点,若\(\overrightarrow{C A}=\lambda \overrightarrow{C E}+\mu \overrightarrow{D B}\),则\(λ+μ\)的值为   .
image.png

参考答案

  1. **答案 ** \((-\sqrt{3}, 1)\)
    解析 \(\because O\)是坐标原点,点\(A\)在第二象限,\(|\overrightarrow{O A}|=2\)\(\angle x O A=150^{\circ}\)
    \(\therefore x_A=|\overrightarrow{O A}| \cdot \cos \angle x O A=2 \times \frac{-\sqrt{3}}{2}=-\sqrt{3}\)
    \(y_A=|\overrightarrow{O A}| \cdot \sin \angle x O A=2 \times \frac{1}{2}=1\),即 \(A(-\sqrt{3}, 1)\)\(\therefore \overrightarrow{O A}=(-\sqrt{3}, 1)\)
    故答案为: \((-\sqrt{3}, 1)\)
  2. 答案 \((3,-1)\)
    解析 \(\because\) 平行四边形\(ABCD\)的三个顶点\(A\)\(B\)\(C\)的坐标分别是\((-2,1)\)\((-1,3)\)\((3,4)\)
    \(\therefore \overrightarrow{B A}=(-2,1)-(-1,3)=(-1,-2)\)\(\overrightarrow{A D}=\overrightarrow{B C}=(3,4)-(-1,3)=(4,1)\)
    \(\therefore \overrightarrow{B D}=\overrightarrow{B A}+\overrightarrow{A D}=(-1,-2)+(4,1)=(3,-1)\)
  3. 答案 \(\left(\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right)\)
    解析\(R(x,y)\),则\(\overrightarrow{Q R}=(x-3, y-\sqrt{3})\)\(\overrightarrow{Q P}=(-2,-\sqrt{3})\)
    因为\(\angle Q=120^{\circ}\) ,所以\(\left\{\begin{array}{l} -2=(x-3) \cos 120^{\circ}-(y-\sqrt{3}) \sin 120^{\circ} \\ -\sqrt{3}=(x-3) \sin 120^{\circ}+(y-\sqrt{3}) \sin 120^{\circ} \end{array}\right.\)
    解得\(x=\frac{5}{2}\)\(y=\frac{5 \sqrt{3}}{2}\),即顶点\(R\)的坐标为\(\left(\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right)\)
    故答案为:\(\left(\frac{5}{2}, \frac{5 \sqrt{3}}{2}\right)\)
  4. 答案 \(\frac{8}{5}\)
    解析 如图所示,建立直角坐标系.
    不妨设\(AB=1\),则\(D(0,0)\)\(C(2,0)\)\(A(0,2)\)\(B(1,2)\)\(E(0,1)\)
    \(\overrightarrow{C A}=(-2,2)\)\(\overrightarrow{C E}=(-2,1)\)\(\overrightarrow{D B}=(1,2)\)
    \(\because\)\(\overrightarrow{C A}=\lambda \overrightarrow{C E}+\mu \overrightarrow{D B}\)\(\therefore (-2,2)=λ(-2,1)+μ(1,2)\)
    \(\therefore\left\{\begin{array}{l} -2 \lambda+\mu=-2 \\ \lambda+2 \mu=2 \end{array}\right.\),解得 \(\lambda=\frac{6}{5}\)\(\mu=\frac{2}{5}\).则 \(\lambda+\mu=\frac{8}{5}\)

image.png

分层练习

【A组---基础题】

1.已知向量\(\vec{a}=(-1,2)\)\(\vec{b}=(3,-5)\),则\(3\vec{a}+2\vec{b}\)等于( )
A.\((3,-4)\) B.\((0,-4)\) C.\((3,6)\) D.\((0,6)\)

2.已知向量\(\vec{a}=\left(-2, \frac{3}{2}\right)\)\(2\vec{a}+3 \vec{b}=(5,-3)\),则\(\vec{b}=\) ( )
A.\((-3,2)\) B.\((3,-2)\) C.\((3,0)\) D.\((9,6)\)

3.已知平面向量\(\vec{a}=(m,-4)\)\(\vec{b}=(-1,m+3)\),若存在实数\(λ<0\),使得\(\vec{a}=λ\vec{b}\),则实数\(m\)的值为( )
A.\(1\) B. \(-\frac{12}{5}\) C.\(-1\) D.\(-4\)

4.已知向量\(\vec{a}=(-2,2)\)\(\vec{b}=(1,-2λ)\),若\((\vec{a}+3\vec{b})||(\vec{a}-\vec{b})\),则实数\(λ\)的值为( )
A.\(0\) B. \(\frac{1}{2}\) C.\(1\) D.\(\frac{4}{3}\)

5.已知平面直角坐标系内\(△ABC\)三个顶点的坐标分别为\(A(-1,1)\)\(B(2,3)\)\(C(-6,5)\)\(D\)\(BC\)边的中点,则 \(\overrightarrow{A D}=\) ( )
A.\((-3,2)\) B.\((-1,3)\) C.\((-3,5)\) D.\((-2,4)\)

6.在平行四边形\(ABCD\)中,若\(\overrightarrow{A B}=(3,1)\)\(\overrightarrow{A C}=(2,4)\),则 \(\overrightarrow{B D}=\)  .

7.已知\(O\)为坐标原点,\(\overrightarrow{P_1 P}=-2 \overrightarrow{P P_2}\),若\(P_1 (1,2)\)\(P_2 (2,-1)\),则与 \(\overrightarrow{O P}\)共线的单位向量为  .

8.已知向量 \(\vec{a}=(2 \sin \theta, 1)\)\(\vec{b}=(\cos \theta,-1)\)\(\theta \in\left(\frac{\pi}{2}, \pi\right)\),且\(\vec{a}||\vec{b}\),则\(\tan ⁡θ\)等于  .

9.已知平行四边形\(ABCD\)中, \(\overrightarrow{E C}=2 \overrightarrow{D E}\)\(\overrightarrow{F C}=2 \overrightarrow{B F}\)\(\overrightarrow{F G}=2 \overrightarrow{G E}\)
(1)用 \(\overrightarrow{A B}\)\(\overrightarrow{A D}\)表示 \(\overrightarrow{A G}\)
(2)若 \(|\overrightarrow{A B}|=6\)\(|\overrightarrow{A D}|=3 \sqrt{2}\)\(\angle B A D=45^{\circ}\),如图建立直角坐标系,求\(\overrightarrow{G B}\)\(\overrightarrow{DF}\)的坐标.
image.png

10.如图,在平面直角坐标系中,\(|\overrightarrow{O A}|=2|\overrightarrow{A B}|=2\)\(\overrightarrow{B C}=(-1, \sqrt{3})\)\(\angle O A B=\frac{2 \pi}{3}\)
(1)求点\(B\)的坐标;(2)求证:\(OC||AB\)
image.png

参考答案

  1. 答案 \(A\)
    解析 \(\because\)向量\(\vec{a}=(-1,2)\)\(\vec{b}=(3,-5)\)
    \(\therefore 3\vec{a}+2\vec{b}=(-3,6)+(6, -10)=(3,-4)\)
    故选:\(A\)
  2. 答案 \(B\)
    解析\(\vec{b}=(x,y)\),向量\(\vec{a}=\left(-2, \frac{3}{2}\right)\)\(2\vec{a}+3 \vec{b}=(5,-3)\)\((-4+3x,3+3y)=(5,-3)\)
    \(\therefore\left\{\begin{array}{l} -4+3 x=5 \\ 3+3 y=-3 \end{array}\right.\),解得\(\left\{\begin{array}{l} x=3 \\ y=-2 \end{array}\right.\),则\(\vec{b}=(3,-2)\)
    故选:\(B\)
  3. 答案 \(A\)
    解析 \(\because\)平面向量\(\vec{a}=(m,-4)\)\(\vec{b}=(-1,m+3)\)
    存在实数\(λ<0\),使得\(\vec{a}=λ\vec{b}\)
    \(\therefore (m,-4)=(-λ,λ(m+3))\)
    \(\therefore\left\{\begin{array}{l} m=-\lambda \\ -4=\lambda(m+3) \end{array}\right.\),解得\(λ=4\)(舍) 或\(λ=-1\)
    \(\therefore\)实数\(m=1\)
    故选:\(A\)
  4. 答案 \(B\)
    解析 \(\because\) 向量\(\vec{a}=(-2,2)\)\(\vec{b}=(1,-2λ)\)

\(\therefore \vec{a}+3\vec{b}=(1,2-6λ)\)\(\vec{a}-\vec{b}=(-3,2+2λ)\)
\(\because (\vec{a}+3\vec{b})||(\vec{a}-\vec{b})\)\(\therefore 2+2λ-(2-6λ)×(-3)=0\)\(\therefore \lambda=\frac{1}{2}\)
故选:\(B\)

  1. 答案 \(B\)
    解析 \(\because B(2,3)\)\(C(-6,5)\)\(D\)\(BC\)边的中点,\(\therefore D(-2,4)\)
    \(\because A(-1,1)\)\(\therefore \overrightarrow{A D}=(-2+1,4-1)=(-1,3)\)
    故选:\(B\)
  2. 答案 \(A\)
    解析 \(\overrightarrow{B D}=\overrightarrow{B A}+\overrightarrow{A D}=-\overrightarrow{A B}+\overrightarrow{B C}=-\overrightarrow{A B}+\overrightarrow{A C}-\overrightarrow{A B}=\overrightarrow{A C}-2 \overrightarrow{A B}\)
    \(=(2-2×3,4-2×1)=(-4,2)\)
    故选:\(A\)
  3. **答案 ** \(\left(\frac{3}{5},-\frac{4}{5}\right)\)\(\left(-\frac{3}{5}, \frac{4}{5}\right)\)
    解析\(P(x,y)\),则根据条件得\((x-1,y-2)=-2(2-x,-1-y)\)
    \(\therefore\left\{\begin{array}{l} x-1=-2(2-x) \\ y-2=-2(-1-y) \end{array}\right.\),解得 \(\left\{\begin{array}{l} x=3 \\ y=-4 \end{array}\right.\)\(\therefore \overrightarrow{O P}=(3,-4)\)
    \(\therefore\)\(\overrightarrow{O P}\)共线的单位向量为:\(\frac{\overrightarrow{O P}}{|\overrightarrow{O P}|}=\left(\frac{3}{5},-\frac{4}{5}\right)\)\(-\frac{\overrightarrow{O P}}{|\overrightarrow{O P}|}=\left(-\frac{3}{5}, \frac{4}{5}\right)\)
  4. 答案 \(-\frac{1}{2}\)
    解析 根据题意,向量\(\vec{a}=(2 \sin \theta, 1)\)\(\vec{b}=(\cos \theta,-1)\)
    \(\vec{a}||\vec{b}\),则有\(2 \sin \theta \times(-1)=\cos \theta \times 1\)

解可得 \(-2 \sin \theta=\cos \theta\),则有\(\tan \theta=-\frac{1}{2}\)
故答案为:\(-\frac{1}{2}\)

  1. 答案 (1) \(\overrightarrow{A G}=\frac{5}{9} \overrightarrow{A B}+\frac{7}{9} \overrightarrow{A D}\) (2) \(\overrightarrow{G B}=\left(\frac{1}{3},-\frac{7}{3}\right)\)\(\overrightarrow{D F}=(4,-2)\)
    解析 (1)由题意可得\(\overrightarrow{A E}=\overrightarrow{A D}+\overrightarrow{D E}=\overrightarrow{A D}+\frac{1}{3} \overrightarrow{A B}\)\(\overrightarrow{A F}=\overrightarrow{A B}+\overrightarrow{B F}=\overrightarrow{A B}+\frac{1}{3} \overrightarrow{A D}\)
    \(\overrightarrow{F G}=2 \overrightarrow{G E}\),所以 \(\overrightarrow{A G}-\overrightarrow{A F}=2(\overrightarrow{A E}-\overrightarrow{A G})\)
    所以 \(\overrightarrow{A G}=\frac{2}{3} \overrightarrow{A E}+\frac{1}{3} \overrightarrow{A F}=\frac{2}{3}\left(\overrightarrow{A D}+\frac{1}{3} \overrightarrow{A B}\right)+\frac{1}{3}\left(\overrightarrow{A B}+\frac{1}{3} \overrightarrow{A D}\right)=\frac{5}{9} \overrightarrow{A B}+\frac{7}{9} \overrightarrow{A D}\)
    (2)过点\(D\)\(AB\)的垂线交于点\(D'\),如图,

image.png
于是在\(Rt△ADD'\)中,由\(\angle B A D=45^{\circ}\),可知\(AD'=3\)
根据题意得各点坐标为\(A(0,0)\)\(B(6,0)\)\(C(9,3)\)\(D(3,3)\)\(E(5,3)\)\(F(7,1)\)
\(\overrightarrow{A G}=\frac{5}{9} \overrightarrow{A B}+\frac{7}{9} \overrightarrow{A D}=\frac{5}{9}(6,0)+\frac{7}{9}(3,3)=\left(\frac{17}{3}, \frac{7}{3}\right)\),所以 \(G\left(\frac{17}{3}, \frac{7}{3}\right)\)
所以 \(\overrightarrow{A B}=(6,0)\)\(\overrightarrow{A G}=\left(\frac{17}{3}, \frac{7}{3}\right)\)
所以\(\overrightarrow{G B}=\overrightarrow{A B}-\overrightarrow{A G}=\left(\frac{1}{3},-\frac{7}{3}\right)\)\(\overrightarrow{D F}=(4,-2)\)

  1. 答案 (1) \(\left(\frac{5}{2}, \frac{\sqrt{3}}{2}\right)\) (2)略.
    解析 (1)由题意,因为\(\angle O A B=\frac{2 \pi}{3}\)\(|\overrightarrow{A B}|=1\)

\(\overrightarrow{A B}=\left(\cos \frac{\pi}{3}, \sin \frac{\pi}{3}\right)=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)
\(\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=(2,0)+\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)=\left(\frac{5}{2}, \frac{\sqrt{3}}{2}\right)\)
即点\(B\)的坐标为 \(\left(\frac{5}{2}, \frac{\sqrt{3}}{2}\right)\)
证明:(2)由题意, \(\overrightarrow{O C}=\overrightarrow{O B}+\overrightarrow{B C}=\left(\frac{5}{2}, \frac{\sqrt{3}}{2}\right)+(-1, \sqrt{3})=\left(\frac{3}{2}, \frac{3 \sqrt{3}}{2}\right)\)
\(\overrightarrow{A B}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\),故\(\overrightarrow{O C}=3 \overrightarrow{A B}\),且\(OC\)\(AB\)不共线,
\(OC||AB\).

【B组---提高题】

1.在平面直角坐标系\(xOy\)中,已知点\(A(1,0)\)和点\(B(-3,4)\),若点\(C\)\(∠AOB\)的平分线上,且\(|\overrightarrow{O C}|=\sqrt{5}\),则 \(\overrightarrow{O C}\)的坐标为  .

  1. 如图,在等腰梯形\(ABCD\)中,\(AB∥CD\)\(A D=D C=C B=\frac{1}{2} A B=1\)\(F\)\(BC\)的中点,点\(P\)在以\(A\)为圆心,\(AD\)为半径的圆弧\(DE\)上变动,\(E\)为圆弧\(DE\)\(AB\)的交点,若\(\overrightarrow{A P}=\lambda \overrightarrow{E D}+\mu \overrightarrow{A F}\),其中\(λ,μ∈R\),则\(2λ+μ\)的取值范围是   .
    image.png

3.如图所示,已知矩形\(ABCD\)中,\(AB=2\)\(AD=1\)\(\overrightarrow{D M}=\frac{1}{3} \overrightarrow{D C}\)\(\overrightarrow{B N}=\frac{2}{3} \overrightarrow{B C}\)\(AC\)\(MN\)相交于点\(E\)
(1)若 \(\overrightarrow{M N}=\lambda \overrightarrow{A B}+\mu \overrightarrow{A D}\),求\(λ\)\(μ\)的值;
(2)用向量 \(\overrightarrow{A M}\)\(\overrightarrow{A N}\)表示 \(\overrightarrow{A E}\)
image.png

参考答案

  1. **答案 ** \((1,2)\)
    解析 \(\overrightarrow{OB}\)方向上的单位向量为\(\overrightarrow{O B^{\prime}}=\left(-\frac{3}{5}, \frac{4}{5}\right)\)
    由题意知, \(\overrightarrow{O C}\)方向上的向量为 \(\overrightarrow{O C^{\prime}}=\overrightarrow{O A}+\overrightarrow{O B^{\prime}}=(1,0)+\left(-\frac{3}{5}, \frac{4}{5}\right)=\left(\frac{2}{5}, \frac{4}{5}\right)\)
    所以四边形\(OAC' B'\)是菱形,且\(OC'\)平分\(∠AOB'\)
    即点\(C\)在直线\(OC'\)上;
    \(\left|\overrightarrow{O C^{\prime}}\right|=\sqrt{\left(\frac{2}{5}\right)^2+\left(\frac{4}{5}\right)^2}=\frac{2 \sqrt{5}}{5}\)\(|\overrightarrow{O C}|=\sqrt{5}\)
    所以 \(\overrightarrow{O C}=\frac{5}{2} \overrightarrow{O C^{\prime}}=(1,2)\)
    故答案为\((1,2)\)

  2. 答案 \([0,2]\)
    解析 建立平面直角坐标系如图所示,
    \(A(0,0)\)\(E(1,0)\)\(D\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)\)\(B(2,0)\)\(C\left(\frac{3}{2}, \frac{\sqrt{3}}{2}\right)\)\(F\left(\frac{7}{4}, \frac{\sqrt{3}}{4}\right)\)
    \(P(\cos \alpha, \sin \alpha)\left(0^{\circ} \leq \alpha \leq 60^{\circ}\right)\)
    \(\overrightarrow{A P}=\lambda \overrightarrow{E D}+\mu \overrightarrow{A F}\)
    \(\therefore(\cos \alpha, \sin \alpha)=\lambda\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)+\mu\left(\frac{7}{4}, \frac{\sqrt{3}}{4}\right)\)
    \(\therefore \cos \alpha=-\frac{1}{2} \lambda+\frac{7}{4} \mu\)⋯①, \(\sin \alpha=\frac{\sqrt{3}}{2} \lambda+\frac{\sqrt{3}}{4} \mu\)…②,
    由①②解得 \(\lambda=-\frac{1}{4} \cos \alpha+\frac{7 \sqrt{3}}{12} \sin \alpha\)\(\mu=\frac{1}{2} \cos \alpha+\frac{\sqrt{3}}{6} \sin \alpha\)
    \(\therefore 2 \lambda+\mu=2\left(-\frac{1}{4} \cos \alpha+\frac{7 \sqrt{3}}{12} \sin \alpha\right)+\left(\frac{1}{2} \cos \alpha+\frac{\sqrt{3}}{6} \sin \alpha\right)=\frac{4 \sqrt{3}}{3} \sin \alpha\)
    \(α∈[0°,60°]\)时, \(\sin \alpha \in\left[0, \frac{\sqrt{3}}{2}\right]\)
    \(\therefore \frac{4 \sqrt{3}}{3} \sin \alpha \in[0,2]\)
    故答案为 \([0,2]\)

    image.png

  3. 答案 (1) \(\lambda=\frac{2}{3}\)\(\mu=-\frac{1}{3}\) (2) \(\overrightarrow{A E}=\frac{1}{3} \overrightarrow{A M}+\frac{2}{3} \overrightarrow{A N}\)
    解析\(A\)点为原点,\(AB\)所在直线为\(x\)轴,\(AD\)所在直线为y轴,建立平面直角坐标系,

image.png
\(A(0,0)\)\(D(0,1)\)\(B(2,0)\)\(M\left(\frac{2}{3}, 1\right)\)\(N\left(2, \frac{2}{3}\right)\)\(C(2,1)\)
(1) \(\overrightarrow{M N}=\left(\frac{4}{3},-\frac{1}{3}\right)=\lambda \overrightarrow{A B}+\mu \overrightarrow{A D}=(2 \lambda, \mu)\),解得:\(\lambda=\frac{2}{3}\)\(\mu=-\frac{1}{3}\)
(2)设 \(\overrightarrow{A E}=t \overrightarrow{A C}\)\(\overrightarrow{A C}=m \overrightarrow{A M}+n \overrightarrow{A N}\)
所以 \(\overrightarrow{A C}=(2,1)=\left(\frac{2}{3} m+2 n, m+\frac{2}{3} n\right)\),解得 \(m=\frac{3}{7}\)\(n=\frac{6}{7}\)
\(\overrightarrow{A C}=\frac{3}{7} \overrightarrow{A M}+\frac{6}{7} \overrightarrow{A N}\),所以 \(\overrightarrow{A E}=t \overrightarrow{A C}=\frac{3}{7} t \overrightarrow{A M}+\frac{6}{7} t \overrightarrow{A N}\)
又因为\(M\)\(E\)\(N\)三点共线,所以\(\frac{3}{7} t+\frac{6}{7} t=1\)\(t=\frac{7}{9},\)
所以 \(\overrightarrow{A E}=\frac{1}{3} \overrightarrow{A M}+\frac{2}{3} \overrightarrow{A N}\).