Huffman实现

发布时间 2023-04-14 14:33:40作者: QianFa01

Huffman编码树

秒懂:【算法】Huffman编码_哔哩哔哩_bilibili

约定:字符x的编码长度 就是其对应叶节点的深度;

在一个字符集中,每个字符出现的次数有多有少,那么若都采用固定长度编码的话,那么编码长度会非常大,并且搜索时间复杂度都非常高;若采用非固定编码,出现次数多的字符编码长度小一些,并且放在树深度小的地方,提高搜索时间效率;这样带权平均编码长度(weight average leaf depth)就会达到最优;同时为了避免歧义,任何字符不能是其他字符的编码前缀;

个人理解:

没有前缀:在具体实现时,由 priority_queue 排序完成后的 节点权值树 再转存在map中时,不会存储根节点,只会存叶子节点,就能避免前缀相同的情况;还有一点就是第一个设置为0,而不是1,1的话就会成为其他字符的前缀;

时间复杂度:对于出现次数多的字符,让它在靠近根节点位置,这样就能接近O(1)时间复杂度;而对于出现次数少的字符,就靠近树的最底部位置;

具体实现

代码参考:Canonical Huffman Coding - GeeksforGeeks

1、实现一个struct,保存字符出现的次数,以及字符本身,还有左右子节点;

2、写一个路径长度模块函数,create_code();

3、写一个Huffman编码函数,create_huffman(); 其中, 先按频率从小到大排列,然后取最小的两个合并为一大的,在继续合并直至成为一个根节点,再将字符树存进map中;接着实现Huffman编码;

  ①在编码时,利用路径长度信息,和bitset<32>类,实现位操作,并且利用成员函数to_string()转化为字符串,左边为高位,右边为低位;substr函数第二个参数长度设置为32,默认到头;

  ②怎么利用路径长度信息的? 比如说代码中 给出的例子c,编码为0,假设还有叶子节点,那么当前编码值加上1,然后再左移(下一层的深度 - 当前层的深度)位,即 0 +1 = 12,再左移(2-1)位,变成102;在内层循环中,当是同一层的最后两个叶子节点时,即110 和 111 , 不做左移,只做值加一操作,代码这儿用了一个next_len 和 cur_len 相减实现左移的次数值;(非常巧妙);

  ③学到了一个next函数,和bitset位操作;

#include <bits/stdc++.h>
using namespace std;

/*Huffman codes : a lossless data compression algorithm; weighted average leaf depth(带权平均深度最小)*/
struct Node{
    int data;
    char c;
    Node* left, *right;
};

struct mycomp{
    bool operator()(Node* a, Node* b){
        return a->data > b->data;
    }
};

class huffman{
private:
    map<int, set<char>> data;
public:
    huffman(){}
    void create_code(Node* root, int code_len){
        if(root == nullptr){
            return;
        }
        /*only store leaf node*/
        if(root->left == nullptr && root->right == nullptr){
            data[code_len].insert(root->c);
        }
        create_code(root->left, code_len + 1);
        create_code(root->right, code_len + 1);
    }
    void create_huffman(int n, char arr_char[], int freq[]){
        /* 小顶堆  取堆顶 freq 小的两个合并*/
        priority_queue<Node*, vector<Node*>, mycomp>que;
        for(int i = 0;i < n;++i){
            Node* newnode = new Node();
            newnode->c = arr_char[i];
            newnode->data = freq[i];
            newnode->left = nullptr;
            newnode->right = nullptr;
            que.push(newnode);
        }
        /*Node Tree*/
        Node* root = nullptr;
        while(que.size() > 1){
            Node* tmp1 = que.top();
            que.pop();
            Node* tmp2 = que.top();
            que.pop();
            Node* mergeNode = new Node();
            mergeNode->data = tmp1->data + tmp2->data;
            mergeNode->c = '-';
            mergeNode->left = tmp1;
            mergeNode->right = tmp2;
            root = mergeNode;
            que.push(mergeNode);
        }
        huffman obj = huffman();
        create_code(root, 0);
        int cur_code = 0, cur_len = 0, next_len = 0;
        for(map<int, set<char>>::iterator it = data.begin(); it != data.end(); ++it){
            set<char> s = it->second;
            cur_len = it->first;
            for(auto i = s.begin(); i != s.end(); ++i){
                cout << *i << " : ";
                /* coding */
                cout << bitset<32>(cur_code).to_string().substr(32 - cur_len, 32) << endl;
                
                /* 相同长度 有一个以上叶子节点时 : 这种情况只出现在 尾部的那俩个元素*/
                if(next(i) != s.end() || next(it) == data.end()) next_len = cur_len;
                else next_len = next(it)->first;
                
                cur_code = (cur_code + 1) << (next_len - cur_len);
            }
        }
    }
};

int main(){
    int n = 4;
    char arr[] = {'a', 'b', 'c', 'd'};
    int fre[] = {10, 1, 15, 7};
    huffman obj;
    obj.create_huffman(n,arr,fre); 
    system("pause");
    return 0;
}
/*
c : 0
a : 10
b : 110
d : 111
*/