CF1253F Cheap Robot

发布时间 2023-12-12 20:30:46作者: cxqghzj

题意

给定一个图,走过一条边的花费为权值,其中有 \(k\) 个充电点。

你需要确定一个电量的上限,使得满足从 \(a\) 走到 \(b\)

Sol

先对于每个点求出她走到充电点最近的距离,用 \(dij\) 随便跑跑。

考虑从 \(a \to b\) 一条边的贡献。设当前的电量上限为 \(c\)

可得:

\[c - dis_a \ge len + dis_b \]

\[c \ge len + dis_a + dis_b \]

求出了一条边的对答案的贡献,答案不就是 \(a \to b\) 中每条边的最大值。

直接跑最小生成树,然后上树剖跑跑就行了。

Code

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <array>
#include <queue>
#include <tuple>
#include <vector>
#include <bitset>
#define int long long
#define pii pair <int, int>
using namespace std;
#ifdef ONLINE_JUDGE

#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
char buf[1 << 23], *p1 = buf, *p2 = buf, ubuf[1 << 23], *u = ubuf;

#endif
int read() {
    int p = 0, flg = 1;
    char c = getchar();
    while (c < '0' || c > '9') {
        if (c == '-') flg = -1;
        c = getchar();
    }
    while (c >= '0' && c <= '9') {
        p = p * 10 + c - '0';
        c = getchar();
    }
    return p * flg;
}
void write(int x) {
    if (x < 0) {
        x = -x;
        putchar('-');
    }
    if (x > 9) {
        write(x / 10);
    }
    putchar(x % 10 + '0');
}

#define fi first
#define se second

const int N = 1e5 + 5, M = 6e5 + 5, inf = 2e18;

namespace G {

array <int, N> fir;
array <int, M> nex, to, len;
int cnt;
void add(int x, int y, int z) {
    cnt++;
    nex[cnt] = fir[x];
    to[cnt] = y;
    len[cnt] = z;
    fir[x] = cnt;
}

}

namespace T {

array <int, N> fir;
array <int, M> nex, to, len;
int cnt;
void add(int x, int y, int z) {
    cnt++;
    nex[cnt] = fir[x];
    to[cnt] = y;
    len[cnt] = z;
    fir[x] = cnt;
}

}

namespace Dij {

priority_queue <pii, vector <pii>, greater <pii> > q;
array <int, N> dis;

bitset <N> vis;

void dijkstra(vector <int> st) {
    dis.fill(inf);
    for (auto x : st) q.push(make_pair(dis[x] = 0, x));
    while (!q.empty()) {
        int u = q.top().se;
        q.pop();
        if (vis[u]) continue;
        vis[u] = 1;
        for (int i = G::fir[u]; i; i = G::nex[i]) {
            if (dis[G::to[i]] <= dis[u] + G::len[i]) continue;
            dis[G::to[i]] = dis[u] + G::len[i];
            q.push(make_pair(dis[G::to[i]], G::to[i]));
        }
    }
}

}

namespace Hpt {

using T::fir; using T::nex; using T::to; using T::len;

array <int, N> siz, dep, fa, son;
array <int, N> cur;

void dfs1(int x) {
    siz[x] = 1;
    for (int i = fir[x]; i; i = nex[i]) {
        if (to[i] == fa[x]) continue;
        fa[to[i]] = x;
        dep[to[i]] = dep[x] + 1;
        dfs1(to[i]);
        siz[x] += siz[to[i]];
        cur[to[i]] = len[i];
        if (siz[to[i]] > siz[son[x]]) son[x] = to[i];
    }
}

array <int, N> dfn, idx, top;
int cnt;

void dfs2(int x, int Mgn) {
    cnt++;
    dfn[x] = cnt;
    idx[cnt] = x;
    top[x] = Mgn;
    if (son[x]) dfs2(son[x], Mgn);
    for (int i = fir[x]; i; i = nex[i]) {
        if (to[i] == fa[x] || to[i] == son[x]) continue;
        dfs2(to[i], to[i]);
    }
}

}

array <int, N> s;

namespace Uni {

array <int, N> fa, siz;

int find(int x) {
    if (x == fa[x]) return x;
    return fa[x] = find(fa[x]);
}

void merge(int x, int y) {
    int fx = find(x),
        fy = find(y);
    if (siz[fx] > siz[fy]) swap(fx, fy);
    siz[fy] += siz[fx];
    fa[fx] = fy;
}

void init(int n) {
    for (int i = 1; i <= n; i++)
        siz[fa[i] = i] = 1;
}

}

namespace Kruskal {

#define tupl tuple <int, int, int>

array <tupl, M> edge;

void solve(int n, int m) {
    sort(edge.begin() + 1, edge.begin() + 1 + m, [](tupl x, tupl y) {
        return get <2>(x) < get <2>(y);
    } );
    Uni::init(n);
    for (int i = 1; i <= m; i++) {
        int u, v, w; tie(u, v, w) = edge[i];
        if (Uni::find(u) == Uni::find(v)) continue;
        Uni::merge(u, v); T::add(u, v, w), T::add(v, u, w);
    }
}

}


namespace Sgt {

array <int, 4 * N> edge;

void pushup(int x) {
    edge[x] = max(edge[x * 2], edge[x * 2 + 1]);
}

void build(int x, int l, int r) {
    if (l == r) {
        edge[x] = Hpt::cur[Hpt::idx[l]];
        return;
    }
    int mid = (l + r) >> 1;
    build(x * 2, l, mid);
    build(x * 2 + 1, mid + 1, r);
    pushup(x);
}

int query(int x, int l, int r, int L, int R) {
    if (L > r || R < l) return 0;
    if (L <= l && R >= r) return edge[x];
    int mid = (l + r) >> 1, ans = 0;
    if (L <= mid) ans = max(query(x * 2, l, mid, L, R), ans);
    if (R > mid) ans = max(query(x * 2 + 1, mid + 1, r, L, R), ans);
    return ans;
}

}

namespace Hpt {

int query(int x, int y, int n) {
    int ans = 0;
    while (top[x] != top[y]) {
        if (dep[top[x]] < dep[top[y]]) swap(x, y);
        ans = max(Sgt::query(1, 1, n, dfn[top[x]], dfn[x]), ans);
        x = fa[top[x]];
    }
    if (dep[x] > dep[y]) swap(x, y);
    ans = max(Sgt::query(1, 1, n, dfn[x] + 1, dfn[y]), ans);
    return ans;
}

}


signed main() {
    int n = read(), m = read(), k = read(), q = read();
    for (int i = 1; i <= m; i++) {
        int x = read(), y = read(), z = read();
        G::add(x, y, z), G::add(y, x, z);
        Kruskal::edge[i] = make_tuple(x, y, z);
    }
    vector <int> isl;
    for (int i = 1; i <= k; i++) isl.push_back(i);
    Dij::dijkstra(isl);
    for (int i = 1; i <= m; i++) {
        int u, v, w; tie(u, v, w) = Kruskal::edge[i];
        w += Dij::dis[u] + Dij::dis[v];
        Kruskal::edge[i] = make_tuple(u, v, w);
    }
    Kruskal::solve(n, m);
    Hpt::dfs1(1), Hpt::dfs2(1, 0);
    Sgt::build(1, 1, n);
    // puts("@");
    while (q--) {
        int x = read(), y = read();
        write(Hpt::query(x, y, n)), puts("");
    }
    return 0;
}