波动方程-初值问题-达朗贝尔公式的推导

发布时间 2023-08-09 19:22:31作者: 永远的纸条

1. 波动方程-初值问题-达朗贝尔公式的推导

1.1. 结论

\[u = \frac{1}{2}[\varphi(x-at)+\varphi(x+at)]+\frac{1}{2a}\int_{x-at}^{x+at}\psi(?)d?+\frac{1}{2a}\int_{0}^{t}\int_{x-a(t-?)}^{x+a(t-?)}f(☆,?)d☆d? \]

1.2. 理论推导

\[\begin{cases} 加速度:u_{tt} = a^{2}u_{xx},x\in R,t>0 \\ 初位移:u|_{t = 0} = \varphi(x) \\ 初速度:u_{t}|_{t = 0} = \psi(x) \end{cases}\tag{1} \]

\[\Delta = b^2-4AC>0,为双曲型 \]

由特征方程:

\[dx^{2}-a^{2}dt^{2}=0\tag{2} \]

知:

\[(\frac{dx}{dt})_1= a,(\frac{dx}{dt})_{2}=-a\tag{3} \]

对(3)积分,有:

\[\begin{cases} x-at = C_1 \\ x+at=C_2 \\ \end{cases}\tag{4} \]

对(1)作变量代换:

\[\begin{cases} ?= x-at \\ ⚪= x+at \end{cases}\tag{5} \]

则有:

\[u_{?,⚪} = 0\tag{6} \]

对 (6)积分则有:

\[u =f(?)+g(⚪)\tag{7} \]

将u代入初始条件,有:

\[\begin{cases} 初位移条件的结论:f(x)+g(x) =\varphi(x) \\ 初速度条件的结论:a[-f'(x)+g'(x)] = \psi(x) \end{cases}\tag{8} \]

对上式初速度条件得到的方程两边积分,有:

\[初速度条件的结论的推论:-f(x)+g(x) = \frac{-1}{2a} \int_{x_0}^{x_1}\psi(\lambda)d\lambda+\frac{C}{2}\tag{9} \]

于是得到:

\[\begin{cases} 初位移条件的结论:f(x)+g(x) =\varphi(x) \\ \\ 初速度条件的结论的推论:-f(x)+g(x) = -\frac{1}{2a} \int_{x_0}^{x_1}\psi(\lambda)d\lambda+\frac{C}{2} \end{cases}\tag{10} \]

联立求解上式得到:

\[\begin{cases} f(★) = \frac{1}{2}\varphi(★) -\frac{1}{2a} \int_{0}^{★}\psi(?)d?-\frac{C}{2} \\ g(★) = \frac{1}{2}\varphi(★) +\frac{1}{2a} \int_{0}^{★}\psi(?)d?+\frac{C}{2} \end{cases}\tag{11} \]

\[\begin{cases} u(x,t) =f(?)+g(⚪)\\ ?= x-at \\ ⚪= x+at \end{cases}\tag{12} \]

\[\begin{cases} f(★) = \frac{1}{2}\varphi(★) -\frac{1}{2a} \int_{0}^{★}\psi(?)d?-\frac{C}{2} \\ g(★) = \frac{1}{2}\varphi(★) +\frac{1}{2a} \int_{0}^{★}\psi(?)d?+\frac{C}{2} \end{cases}\tag{13} \]

于是:

\[u(x,t) =\frac{1}{2}[\varphi(x-at)+\varphi(x+at)]+\frac{1}{2a} \int_{x-at}^{x+at}\psi(?)d?\tag{14} \]