大学物理下笔记

发布时间 2023-11-20 16:59:14作者: 520Enterprise

电荷和场

关键方程

说明 方程
Coulomb's law 库仑定律 \(\vec{\mathbf{F}}_{12} = \dfrac{1}{4\pi\varepsilon_0}\dfrac{q_1q_2}{r_{12}^2}\hat{\mathbf{r}}_{12}\)
无限导线的电场 \(\vec{\mathbf{E}}(z)=\dfrac{1}{4\pi\varepsilon_0}\dfrac{2\lambda}{z}\hat{\mathbf{k}}\)
无限平面的电场 \(\vec{\mathbf{E}}=\dfrac{\sigma}{2\varepsilon_0}\hat{\mathbf{k}}\)
偶极矩 Dipole moment \(\vec{\mathbf{p}}=q\vec{\mathbf{d}}\)
外部电场中偶极子上的扭矩 Torque \(\vec{\mathbf{\tau}}=\vec{\mathbf{p}}\times\vec{\mathbf{E}}\)

电偶极子(Electric dipoles)

1698504168195

偶极矩 定义为: \(\vec{p} = q\vec{d}\),其中 \(q\) 为电荷量,\(\vec{d}\) 为电荷间距
外部电场中偶极子上的扭矩为: \(\vec{\tau} = \vec{p} \times \vec{E}\),其中 \(\vec{E}\) 为电场强度

电偶极子的电场为: \(\vec{E} = \dfrac{-1}{4\pi\varepsilon_0}\left(\dfrac{\vec{p}}{r^3}\right)\)

高斯定律

关键方程

说明 方程
均匀电场的电通量 flux \(\Phi = \vec{\mathbf{E}}\cdot\vec{\mathbf{A}}\)
通过开放曲面的电通量 \(\Phi = \displaystyle\int_{S} \vec{\mathbf{E}}\cdot\hat{\mathbf{n}}dA = \displaystyle\int_{S} \vec{\mathbf{E}}\cdot d\vec{\mathbf{A}}\)
通过封闭曲面的电通量 \(\Phi = \displaystyle\oint_{S} \vec{\mathbf{E}}\cdot\hat{\mathbf{n}}dA = \displaystyle\oint_{S} \vec{\mathbf{E}}\cdot d\vec{\mathbf{A}}\)
高斯定律 \(\displaystyle\oint_{S} \vec{\mathbf{E}}\cdot \hat{\mathbf{n}}dA = \dfrac{q_{enc}}{\varepsilon_0}\)
导体表面外的电场 \(E = \dfrac{\sigma}{\varepsilon_0}\)

电势

关键方程

说明 方程
双电荷系统的势能 \(\displaystyle U(r) = k\dfrac{q_1q_2}{r}\)
电势差 \(\Delta V = \dfrac{\Delta U}{q}\)
电势 \(\displaystyle V=\dfrac{U}{q} = -\int_{R}^{P} \vec{\mathbf{E}}\cdot d\vec{\mathbf{l}}\)
两点之间的电势差 \(\displaystyle V_{BA} = -\int_{A}^{B} \vec{\mathbf{E}}\cdot d\vec{\mathbf{l}} = V_B - V_A\)
点电荷的电势 \(\displaystyle V = \dfrac{1}{4\pi\varepsilon_0}\dfrac{q}{r} = \dfrac{kq}{r}\)
电偶极矩 \(\vec{\mathbf{p}}=q\vec{\mathbf{d}}\)
电偶极子的电势 \(\displaystyle V = \dfrac{1}{4\pi\varepsilon_0}\dfrac{\vec{\mathbf{p}}\cdot\hat{\mathbf{r}}}{r^2}\) = \(k\dfrac{\vec{\mathbf{p}}\cdot\hat{\mathbf{r}}}{r^2}\)
连续电荷分布的电势 \(\displaystyle V_P = \dfrac{1}{4\pi\varepsilon_0}\displaystyle\int \dfrac{dq}{r} = k\displaystyle\int \dfrac{dq}{r}\)
电场作为电势梯度 \(\vec{\mathbf{E}} = -\vec{\mathbf{\nabla}}V\)
笛卡尔坐标中的 Nabla 算子 \(\vec{\mathbf{\nabla}} = \hat{\mathbf{i}}\dfrac{\partial}{\partial x} + \hat{\mathbf{j}}\dfrac{\partial}{\partial y} + \hat{\mathbf{k}}\dfrac{\partial}{\partial z}\)
柱坐标中的 Nabla 算子 \(\vec{\mathbf{\nabla}} = \hat{\mathbf{r}}\dfrac{\partial}{\partial r} + \hat{\mathbf{\theta}}\dfrac{1}{r}\dfrac{\partial}{\partial \theta} + \hat{\mathbf{z}}\dfrac{\partial}{\partial z}\)
球坐标中的 Nabla 算子 \(\vec{\mathbf{\nabla}} = \hat{\mathbf{r}}\dfrac{\partial}{\partial r} + \hat{\mathbf{\theta}}\dfrac{1}{r}\dfrac{\partial}{\partial \theta} + \hat{\mathbf{\varphi}}\dfrac{1}{r\sin\theta}\dfrac{\partial}{\partial \varphi}\)

电容

关键方程

说明 方程
电容 Capacitance \(\displaystyle C = \dfrac{Q}{V}\)
平行板电容器(parallel-plate capacitor)的电容 \(\displaystyle C = \dfrac{\sigma A}{Ed} = \varepsilon_0\dfrac{ A}{d}\)
真空球形电容器(vacuum spherical capacitor)的电容 \(\displaystyle C = 4\pi\varepsilon_0\dfrac{R_1R_2}{R_2-R_1}\)
真空圆柱体电容器(vacuum cylindrical capacitor)的电容 \(\displaystyle C = 2\pi\varepsilon_0\dfrac{l}{\ln\dfrac{R_2}{R_1}}\)
串联电容器的电容 \(\displaystyle \dfrac{1}{C} = \dfrac{1}{C_1} + \dfrac{1}{C_2} + \cdots + \dfrac{1}{C_n}\)
并联电容器的电容 \(\displaystyle C = C_1 + C_2 + \cdots + C_n\)
能量密度 \(\displaystyle u_E = \dfrac{1}{2}\varepsilon_0E^2\)
电容器的能量 \(\displaystyle U_C = \dfrac{1}{2}CV^2 = \dfrac{1}{2}QV = \dfrac{1}{2}Q^2C\)
带电介质的电容器电容 \(\displaystyle C = \kappa C_0\)
带电介质的电容器能量 \(\displaystyle U = \dfrac{1}{\kappa}U_0\)
介电常数 Dielectric constant \(\displaystyle \kappa = \dfrac{E_0}{E}\)
电介质中的感应电场 \(\displaystyle \vec{\mathbf{E}}_i=(\dfrac{1}{\kappa}-1)\vec{\mathbf{E}}_0\)

电流和电阻

关键方程

说明 方程
电流 \(\displaystyle I = \dfrac{dQ}{dt}\)
漂移速度 drift velocity \(\displaystyle v_d = \dfrac{I}{nqA}\)
电流密度 \(\displaystyle I = \iint \vec{\mathbf{J}}\cdot d\vec{\mathbf{A}}\)
电阻率 resistivity \(\displaystyle \rho = \dfrac{E}{J} = \dfrac{E}{\sigma E} = \dfrac{1}{\sigma}\)
电阻率和温度的关系 \(\displaystyle \rho = \rho_0[1+\alpha(T-T_0)]\)
电阻 \(\displaystyle R = \rho \dfrac{L}{A} \equiv \dfrac{V}{I}\)

直流电路

关键方程

|路端电压|\(\displaystyle V_{terminal} = \varepsilon - Ir\)|