7.2 复数的四则运算

发布时间 2023-05-05 10:01:23作者: 贵哥讲高中数学

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高一数学同步精品讲义与分层练习(人教A版2019)]
(https://www.zxxk.com/docpack/2921718.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第二册同步巩固,难度2颗星!

基础知识

复数的加、减法及其几何意义

(1) 复数的加法
\(z_1=a+bi\)\(z_2=c+di\) ,\(a\) ,\(b\), \(c\),\(d∈R\)
\(z_1+ z_2=a+b i+c+d i=(a+c)+(b+d) i\)
解释
① 两个复数的和仍然是一个确定复数,形式类似两个多项式相加.
② 复数的加法满足交换律和结合律,
即对任意\(z_1\),\(z_2\),\(z_3∈C\),有\(z_1+z_2=z_2+z_1\)\((z_1+z_2 )+z_3=z_1+(z_2+z_3 )\).
【例】\(z_1=-1+2i\)\(z_2=2-4i\),则\(z_1+ z_2=\) .
\(z_1+ z_2=-1+2i+2-4i=1-2i\).
 

(2) 复数加法的几何意义
复数与复平面内以原点为起点的向量一一对应的,设\(\overrightarrow{O Z_1}\),\(\overrightarrow{O Z_2}\)分别与复数\(z_1=a+bi\)\(z_2=c+di\)对应,则\(\overrightarrow{O Z_1} =(a,b)\)\(\overrightarrow{O Z_2} =(c,d)\),进而可得\(\overrightarrow{O Z_1} +\overrightarrow{O Z_2} =(a+c,b+d)\)
这说明两个向量\(\overrightarrow{O Z_1}\)\(\overrightarrow{O Z_2}\)的和就是与复数\((a+c)+(b+d) i\)对应的向量.
因此,复数的加法可以按照向量的加法来进行(符合平行四边形法则、向量坐标的运算),这就是复数加法的几何意义.
image.png
 

(3) 复数的减法
\(z_1=a+bi\)\(z_2=c+di\) , \(a\) ,\(b\), \(c\),\(d∈R\),
\(z_1- z_2=a+b i-(c+d i)=(a-c)+(b-d) i\).
解释
与实数减法的意义进行类比可得,减法的几何意义也是可以按照向量的减法来进行.
 

复数的乘、除运算

(1)设\(z_1=a+bi\)\(z_2=c+di\) , \(a\) ,\(b\), \(c\),\(d∈R\),
\(z_1⋅ z_2=(a+b i)⋅(c+d i)=(a c-b d)+(b c+a d) i\);
\(\dfrac{z_1}{z_2}=\dfrac{a+b i}{c+d i}=\dfrac{(a+b i)(c-d i)}{(c+d i) \cdot(c-d i)}=\dfrac{(a c+b d)+(b c-a d) i}{c^2+d^2}\).
解释
① 复数的乘法类似两个多项式相乘;
② 复数的乘法满足交换律、结合律,乘法对加法满足分配律,
即对任意\(z_1\),\(z_2\),\(z_3∈C\),有\(z_1 z_2=z_2 z_1\)\((z_1 z_2 ) z_3=z_1 (z_2 z_3 )\)\(z_1 (z_2+z_3 )=z_1 z_2+z_1 z_3\)
③ 复数的除法,分子分母都乘以分母的共轭复数c-d i再化简,其实就是“分母实数化”,好像初中学二次根式的“分母有理化”.
 

【例】计算 \(\dfrac{2 i}{3+4 i}\).
\(\dfrac{2 i}{3+4 i}=\dfrac{2 i(3-4 i)}{(3+4 i)(3-4 i)}=\dfrac{6 i-8 i^2}{3^2-(4 i)^2}=\dfrac{8+6 i}{9+16}=\dfrac{8+6 i}{25}=\dfrac{8}{25}+\dfrac{6}{25} i\).
 

基本方法

【题型1】 复数的四则运算

【典题1】计算下列各题
  (1) \((2-i)(-1+5i)(3-4i)+2i\)\(\qquad \qquad\) (2) \(\dfrac{(1-4 i)(1+i)+2+4 i}{3+4 i}\)
解析(1)\((2-i)(-1+5i)+2i\)
\(=-2+10i+i-5i^2+2i\)
\(=-2+11i+5+2i\)
\(=3+13i\)
(2)\(\dfrac{(1-4 i)(1+i)+2+4 i}{3+4 i}\)
\(=\dfrac{\left(1+i-4 i-4 i^2\right)+2+4 i}{3+4 i}=\dfrac{5-3 i+2+4 i}{3+4 i}\)
\(=\dfrac{7+i}{3+4 i}=\dfrac{(7+i)(3-4 i)}{(3+4 i)(3-4 i)}=\dfrac{21-28 i+3 i-4 i^2}{25}\)
\(=\dfrac{25-25 i}{25}=1-i\)
点拨 复数的四则运算类似多项式的四则运算,注意复数除法“分母实数化”,最终把结果化简为\(a+bi(a,b∈R)\)的形式.
 

【典题2】设复数\(z\)满足 \(\dfrac{z+1}{z}=i\),则下列说法正确的是(  )
 A.\(z\)为纯虚数 \(\qquad \qquad \qquad\) B.\(z\)的虚部为\(-\dfrac{1}{2}i\)
\(\qquad \qquad \qquad\) C.在复平面内,\(z\)对应的点位于第二象限 \(\qquad \qquad \qquad\) D.\(|z|=\dfrac{\sqrt{2}}{2}\)
解析\(\because z+1=zi\)\(\therefore(1-\mathrm{i}) \mathrm{z}=-1 \Longrightarrow \mathrm{z}=\dfrac{1}{-1+i}=-\dfrac{1}{2}-\dfrac{1}{2} i\)
\(\therefore |z|=\dfrac{\sqrt{2}}{2}\),复数\(z\)的虚部为\(-\dfrac{1}{2}\),不是纯虚数,
复数\(z\)在复平面内所对应的点的坐标为\(\left(-\dfrac{1}{2},-\dfrac{1}{2}\right)\),在第三象限.
\(\therefore\)正确的是\(D\)
故选 \(D\)
点拨 先把复数\(z\)求出或化简为\(a+bi(a,b∈R)\)的形式,在作出判断.
 

【典题3】\(f(z)=2 z+\bar{z}-3 i\)\(f(\bar{z}+i)=6-3 i\),求复数\(z\)
解析 \(\because f(z)=2z+\bar{z}-3i\)
\(\therefore f(\bar{z}+i)=2(\bar{z}+i)+(\bar{z}+i)-3i\)\(=2\bar{z}+2i+z-i-3i=2\bar{z}+z-2i\)
\(f(\bar{z}+i)=6-3i\)\(\therefore 2\bar{z}+z-2i=6-3i\)
\(2\bar{z}+z=6-i\)
\(z=x+yi(x,y∈R)\),则\(\bar{z}=x-yi\)
\(\therefore 2(x-yi)+x+yi=3x-yi=6-i\)
\(\therefore\left\{\begin{array} { l } { 3 x = 6 } \\ { y = 1 } \end{array} \Rightarrow \left\{\begin{array}{l} x=2 \\ y=1 \end{array}\right.\right.\)\(\therefore z=2+i\).
点拨求满足某些要求的复数\(z\),可用待定系数法.
 

【典题4】在复数范围内解方程\(x^2+x+1=0\).
解析\(\because x2+x+1=0\)\(\therefore\)配方得 \(\left(x+\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\)
\(\therefore x+\dfrac{1}{2}= \pm \dfrac{\sqrt{3}}{2} i\),即 \(x_1=-\dfrac{1}{2}-\dfrac{\sqrt{3}}{2} i\)\(x_2=-\dfrac{1}{2}+\dfrac{\sqrt{3}}{2} i\).
点拨在复数范围内,实系数一元二次方程\(ax^2+bx+c=0(a≠0)\)的求根公式为:
(1)当 \(\Delta \geqslant 0\)时, \(x=\dfrac{-b \pm \sqrt{b^2-4 a c}}{2 a}\);(2)当\(\Delta<0\)时, \(x=\dfrac{-b \pm \sqrt{-\left(b^2-4 a c\right) i}}{2 a}\).
 

【巩固练习】

1.计算 \(\dfrac{(i-2)(i-1)}{(1+i)(i-1)+i}=\) (  )
 A.\(-1+i\) \(\qquad \qquad \qquad\) B.\(-1-i\) \(\qquad \qquad \qquad\) C.\(1+i\) \(\qquad \qquad \qquad\) D.\(-2+i\)
 

2.已知复数\(z\)的实部为\(1\),虚部的绝对值为\(3\),则下列说法错误的是(  )
 A. \(z+\dfrac{10}{z}\)是实数 \(\qquad \qquad \qquad\) B. \(z+\dfrac{10}{z}<2\)
 C. \(z+\dfrac{10}{z}>1\) \(\qquad \qquad \qquad\) D.\(\bar{z}\)在复平面中所对应的点不可能在第三象限
 

3.已知两非零复数\(z_1\),\(z_2\),若\(z_1\cdot z_2∈R\),则一定成立的是(  )
 A.\(z_1+z_2∈R\) \(\qquad \qquad \qquad\) B. \(z_1 \cdot \overline{z_2} \in R\) \(\qquad \qquad \qquad\) C. \(\dfrac{z_1}{z_2} \in R\) \(\qquad \qquad \qquad\) D. \(\cdot \dfrac{z_1}{\overline{z_2}} \in R\)
 

4.方程\(x^2+3=0\)在复数范围内的解是\(\underline{\quad \quad}\)
 

5.若复数\(z\)满足\(\bar{z} i=\dfrac{|z|}{2}-3 i\),则\(z=\) \(\underline{\quad \quad}\)
 

6.设\(f(z)=z-2i+|z|\),若\(z_1=3+4i\)\(z_2=-2-i\),则\(f(z_1-z_2 )=\) \(\underline{\quad \quad}\)
 
 
 

参考答案

  1. 答案 \(A\)
    解析 \(\dfrac{(i-2)(i-1)}{(1+i)(i-1)+i}=\dfrac{i^2-i-2 i+2}{i-1+i^2-i+i}=\dfrac{1-3 i}{-2+i}\)\(=\dfrac{(1-3 i)(-2-i)}{(-2+i)(-2-i)}=\dfrac{-2-i+6 i+3 i^2}{5}=\dfrac{-5+5 i}{5}=-1+i\).

  2. 答案 \(B\)
    解析 由已知得,\(z=1-3i\)\(z=1+3i\)
    \(z+\dfrac{10}{z}=z+\dfrac{10 \bar{z}}{|z|^2}=z+\bar{z}\)
    \(\therefore z+\dfrac{10}{z}=2\),则\(A\)\(C\)正确,\(B\)错误;
    \(\because \bar{z}\)的实部大于\(0\),故\(\bar{z}\)在复平面中所对应的点不可能在第三象限,\(D\)正确.
    故选 \(B\)

  3. 答案 \(D\)
    解析\(z_1=a+bi\)\(z_2=c+di\)\((a,b,c,d∈R)\)
    \(z_1+z_2=a+bi+c+di=a+c+(b+d)i\)
    \(\therefore z_1+z_2∈R\)不一定成立,故\(A\)不正确;
    \(z_1 \cdot \overline{z_2}=(a+b i)(c-d i)=a c+b d+(b c-a d) i\)
    \(\therefore z_1 \cdot \overline{z_2} \in R\)不一定成立,故\(B\)不正确;
    \(\dfrac{z_1}{z_2}=\dfrac{a+b i}{c+d i}=\dfrac{(a+b i)(c-d i)}{(c+d i)(c-d i)}=\dfrac{a c+b d+(b c-a d) i}{c^2+d^2}\)
    \(\therefore \dfrac{z_1}{z_2} \in R\)不一定成立,故\(C\)不正确;
    \(\because \dfrac{z_1}{\overline{z_2}}=\dfrac{z_1 \cdot z_2}{\overline{z_2} \cdot z_2}=\dfrac{z_1 \cdot z_2}{\left|z_2\right|^2}\),且 \(z_1 z_2 \in R\)
    \(\therefore \dfrac{z_1}{\overline{z_2}} \in R\)正确,故\(D\)成立.
    故选 \(D\)

  4. 答案 \(\pm \sqrt{3} i\)

  5. 答案 \(-3+\sqrt{3} i\)
    解析\(z=a+bi(a,b∈R)\),则\(\bar{z}=a-bi\)\(|z|=\sqrt{a^2+b^2}\)
    \(\because(a-b i) \cdot i=\dfrac{\sqrt{a^2+b^2}}{2}-3 i\)
    \(\therefore b+a i=\dfrac{\sqrt{a^2+b^2}}{2}=-3 i\)
    \(\therefore\left\{\begin{array}{l} b=\dfrac{\sqrt{a^2+b^2}}{2} \\ a=-3 \end{array}\right.\),解得\(a=-3\)\(b=\sqrt{3}\)
    \(z=-3+\sqrt{3} i\)

  6. 答案 \(2\)
    解析 \(\because z_1=3+4i\)\(z_2=-2-i\)
    \(\therefore z_1-z_2=5+5i\)
    于是 \(f\left(z_1-z_2\right)=f(5+5 i)=(5+5 i)-2 i+|5+5 i|\)
    \(=5+3 i+5 \sqrt{2}=(5+5 \sqrt{2})+3 i\)
     

【题型2】 复数运算的几何意义

【典题1】设复数\(z_1\),\(z_2\)满足\(|z_1 |=|z_2 |=2\),\(z_1+z_2=\sqrt{3}+i\),则\(|z_1-z_2 |=\)   .
解析 \(\because |z_1 |=|z_2 |=2\)
\(\therefore z_1\),\(z_2\)在复平面上分别对应的点\(B\),\(C\)在以原点为圆心,半径为\(2\)的圆上,
\(\because z_1+z_2=\sqrt{3}+i\), \(\therefore z_1+z_2\)在复平面上分别对应的点\(A(\sqrt{3},1)\)在圆\(O\)上,
由向量的平行四边形法则,可知四边形\(OCAB\)是平行四边形,
如下图易知\(∆AOC\)是等边三角形且边长为\(2\),易求\(BC=2\sqrt{3}\),
由向量的三角形法则可知 \(\left|z_1-z_2\right|=|\overrightarrow{B C}|=|B C|=2 \sqrt{3}\).
image.png
 

【典题2】已知复数\(|z|=1\)\(i\)为虚数单位,则\(|z-1+2i|\)的最小值是\(\underline{\quad \quad}\)
解析 复数\(z\)满足\(|z|=1\)(\(i\)是虚数单位),复数\(z\)表示复平面上的点到\((0,0)\)的距离为\(1\)的圆.
\(|z-1+2i|\)的几何意义是圆上的点\(A\)\(P(1,-2)\)的距离,
所以最小值为 \(A^{\prime} P=\sqrt{(0-1)^2+(0-(-2))^2}-1=\sqrt{5}-1\)
image.png
点拨 复数的几何意义,
\(z_1=a+bi\) , \(z_2=c+di\), \(a\) ,\(b\), \(c\) ,\(d∈R\)
\(|z_1-z_2 |\)表示\((a ,b)\)\((c ,d)\)的距离,即 \(\left|z_1-z_2\right|=\sqrt{(a-c)^2+(b-d)^2}\).
\(|z-z_1 |=r(r>0)\)表示以\((a ,b)\)为圆心,\(r\)为半径的圆.
 

【巩固练习】

1.在平行四边形\(ABCD\)中,对角线\(AC\)\(BD\)相交于点\(O\),若向量 \(\overrightarrow{O A}\)\(\overrightarrow{O B}\)对应的复数分别是\(3+i\)\(-1+3i\),则 \(\overrightarrow{CD}\)对应的复数是(  )
 A.\(2+4i\) \(\qquad \qquad \qquad\) B.\(-2+4i\) \(\qquad \qquad \qquad\) C.\(-4+2i\) \(\qquad \qquad \qquad\) D.\(4-2i\)
 

2.复数\(z_1=1+2i\)\(z_2=-2+i\)\(z_3=-1-2i\),它们在复平面上的对应点是一个正方形的三个顶点,求这个正方形的第四个顶点对应的复数.
 

3.如图,向量\(\overrightarrow{O Z_1}\) ,\(\overrightarrow{O Z_2}\)对应复数分别为\(z_1=a+bi(a,b∈R)\)\(z_2=c+di(c,d∈R)\),作出\(z_1+z_2\)对应的向量\(\overrightarrow{O Z }\),并指出\(|z_1+z_2 |≤|z_1 |+|z_2 |\)成立吗?
image.png
 

4.若\(z∈C\)\(|z+2-2i|=1\),则\(|z-2-2i|\)的最小值是\(\underline{\quad \quad}\)
 

5.已知三个复数\(z_1\)\(z_2\)\(z_3\),并且\(|z_1 |=|z_2 |=|z_3 |=1\)\(z_1\)\(z_2\)所对应的向量\(\overrightarrow{O Z_1}\) ,\(\overrightarrow{O Z_2}\)满足 \(\overrightarrow{O Z}_1 \cdot \overrightarrow{O Z}_2=0\),求\(|z_1+z_2-z_3 |\)的取值范围.
 

6.已知\(A (1,2)\),\(B(a,1)\),\(C(2,3)\),\(D(-1,b)(a,b∈R)\)是复平面上的四个点,且向量 \(\overrightarrow{A B}\), \(\overrightarrow{C D}\)对应的复数分别为\(z_1\)\(z_2\)
  (1)若\(z_1+z_2=1+i\),求\(z_1\)\(z_2\)
  (2)若\(|z_1+z_2 |=2\)\(z_1-z_2\)为实数,求\(a\),\(b\)的值.
 
 
 

参考答案

  1. 答案 \(D\)
    解析 由于 \(\overrightarrow{C D}=\overrightarrow{B A}=\overrightarrow{O A}-\overrightarrow{O B}\),所以\(\overrightarrow{CD}\)对应的复数为\((3+i)-(-1+3i)=4-2i\)

  2. 答案 \(2-i\)
    解析解法一:如图,设复数\(z_1\)\(z_2\)\(z_3\)所对应的点分别为\(A\)\(B\)\(C\),正方形的第四个顶点\(D\)对应的复数为\(x+yi(x,y∈R)\)
    image.png
    \(\overrightarrow{A D}=\overrightarrow{O D}-\overrightarrow{O A}=(x+y i)-(1+2 i)=(x-1)+(y-2) i\)
    \(\overrightarrow{B C}=\overrightarrow{O C}-\overrightarrow{O B}=(-1-2 i)-(-2+i)=1-3 i\)
    因为 \(\overrightarrow{A D}=\overrightarrow{B C}\)
    所以\((x-1)+(y-2)i=1-3i\)
    所以 \(\left\{\begin{array}{l} x-1=1 \\ y-2=-3 \end{array}\right.\),解得 \(\left\{\begin{array}{l} x=2 \\ y=-1 \end{array}\right.\).
    故点\(D\)对应的复数为\(2-i\)
    解法二:设复数\(z_1\)\(z_2\)\(z_3\)所对应的点分别为\(A\)\(B\)\(C\)
    正方形的第四个顶点\(D\)对应的复数为\(x+yi(x,y∈R)\)
    因为点\(A\)与点\(C\)关于原点对称,
    所以原点\(O\)为正方形的中心,
    所以点\(O\)也是点\(B\)与点\(D\)连线的中点,
    于是\((-2+i)+(x+yi)=0\)
    所以x=2,y=-1,
    故点\(D\)对应的复数为\(2-i\)

  3. 答案 成立
    解析 解法1:由向量平行四边形法则知,分别以向量\(\overrightarrow{O Z_1}\) ,\(\overrightarrow{O Z_2}\)为邻边作平行 四边形所得的对角线\(OZ\),即为向量\(\overrightarrow{O Z }\),如图(1).
    image.png
    解法2:以向量\(\overrightarrow{O Z_1}\)的终点\(Z_1\)为起点作向量 \(\overrightarrow{Z_1 Z}=\overrightarrow{O Z_2}\)
    则向量\(\overrightarrow{O Z }\)即为复数\(z_1+z_2\)对应的向量,如图(2).
    由向量模的性质知:\(|z_1+z_2 |≤|z_1 |+|z_2 |\)成立.

  4. 答案 \(3\)
    解析 已知\(|z-(-2+2i)|=1\)中,
    \(z\)的对应点轨迹是以\((-2,2)\)为圆心,\(1\)为半径的圆,
    \(|z-(2+2i)|\)表示圆上的点与点\((2,2)\)之间的距离,
    最小值为圆心与点\((2,2)\)的距离减去半径,易得\(|z-2-2i|\)的最小值为\(3\)

  5. 答案 \([\sqrt{2}-1,\sqrt{2}+1]\)
    解析 由题意可知 复数\(z_1\)\(z_2\)\(z_3\)对应的点\(Z_1\)\(Z_2\)\(Z_3\)在单位圆上,
    \(\overrightarrow{O Z}_1 \cdot \overrightarrow{O Z}_2=0\)\(\therefore OZ_1⊥OZ_2\)
    不妨设\(Z_1 (1,0)\)\(Z_2 (0,1)\),如图
    image.png
    \(\therefore\)\(Z_3\)\(A\)重合时,\(|z_1+z_2-z_3 |\)有最小值为\(\sqrt{2}-1\)
    \(Z_3\)\(B\)重合时,\(|z_1+z_2-z_3 |\)有最大值为\(\sqrt{2}+1\)
    \(\therefore |z_1+z_2-z_3 |\)的取值范围是\([\sqrt{2}-1,\sqrt{2}+1]\)
    故答案为\([\sqrt{2}-1,\sqrt{2}+1]\)

  6. 答案 (1) \(z_1=4-i\)\(z_2=-3+2i\);(2) \(a=4\),\(b=2\)
    解析(1)向量 \(\overrightarrow{A B}=(a-1,-1)\)\(\overrightarrow{C D}=(-3, b-3)\)对应的复数分别为
    \(z_1=(a-1)-i\)\(z_2=-3+(b-3)i\)
    \(\therefore z_1+z_2=(a-4)+(b-4)i=1+i\)
    \(\therefore a-4=1\)\(b-4=1\).解得\(a=b=5\)
    \(\therefore z_1=4-i\),\(z_2=-3+2i\)
    (2)\(|z_1+z_2 |=2\),\(z_1-z_2\)为实数,
    \(\therefore \sqrt{(a-4)^2+(b-4)^2}=2\)\((a+2)+(2-b)i∈R\)
    \(\therefore 2-b=0\),解得\(b=2\)
    \(\therefore (a-4)^2+4=4\),解得\(a=4\)
    \(\therefore a=4\),\(b=2\)
     

分层练习

【A组---基础题】

1.若\(z_1=2+i\)\(z_2=3+ai(a∈R)\)\(z_1+z_2\)所对应的点在实轴上,则\(a\)为(  )
 A.\(3\) \(\qquad \qquad \qquad \qquad\) B.\(2\) \(\qquad \qquad \qquad \qquad\) C.\(1\) \(\qquad \qquad \qquad \qquad\) D.\(-1\)
 

2.在复平面内,复数\(1+i\)\(1+3i\)分别对应向量 \(\overrightarrow{O A}\)\(\overrightarrow{O B}\),其中\(O\)为坐标原点,则 \(|\overrightarrow{A B}|=\) (  )
 A.\(\sqrt{2}\) \(\qquad \qquad \qquad \qquad\) B.\(2\) \(\qquad \qquad \qquad \qquad\) C. \(\sqrt{10}\) \(\qquad \qquad \qquad \qquad\) D.\(4\)
 

3.若\(|z-1|=|z+1|\),则复数\(z\)对应的点\(Z\)(  )
 A.在实轴上 \(\qquad \qquad \qquad\) B.在虚轴上 \(\qquad \qquad \qquad\) C.在第一象限 \(\qquad \qquad \qquad\) D.在第二象限
 

4.设\(z_1\),\(z_2\)是复数,给出四个命题
①若\(|z_1-z_2 |=0\),则 \(\overline{z_1}=\overline{z_2}\) \(\qquad \qquad\) ②若 \(z_1=\overline{z_2}\) ,则 \(\overline{z_1}=z_2\)
③若\(|z_1 |=|z_2 |\),则 \(z_1 \cdot \overline{z_1}=z_2 \cdot \overline{z_2}\) \(\qquad\) ④若\(|z_1 |=|z_2 |\),则 \(|z_1 |=|z_2 |\)
其中真命题的个数有(  )
 A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(2\) \(\qquad \qquad \qquad \qquad\) C.\(3\) \(\qquad \qquad \qquad \qquad\) D.\(4\)
 

5.已知复数\(z=\dfrac{8-i}{2+3 i}\)(\(i\)为虚数单位),下列说法 其中正确的有(  )
①复数\(z\)在复平面内对应的点在第四象限;②\(|z|=\sqrt{5}\)
\(z\)的虛部为\(-2i\); ④ \(\bar{z}=1-2i\)
 A.\(1\)\(\qquad \qquad \qquad \qquad\) B.\(2\)\(\qquad \qquad \qquad \qquad\) C.\(3\)\(\qquad \qquad \qquad \qquad\) D.\(4\)
 

6.若\(|z|=3\)\(z+\bar{z}=0\),则复数\(z=\)\(\underline{\quad \quad}\)
 

7.设\(x\)\(y\)为实数,且 \(\dfrac{x}{1-i}+\dfrac{y}{1-2 i}=\dfrac{5}{1-3 i}\),则\(x+y=\) \(\underline{\quad \quad}\)
 

8.方程\(x^2+2x-1=0\)在复数范围内的解是 \(\underline{\quad \quad}\)
 

9.已知复数\(z_1=\left(a^2-2\right)+(a-4) i\)\(z_2=a-\left(a^2-2\right) i(a \in R)\),且\(z_1-z_2\)为纯虚数,则\(a=\)\(\underline{\quad \quad}\)
 

10.已知\(|z|=2\),则\(|z-i|\)的最大值为\(\underline{\quad \quad}\)
 

11.如果复数\(z\)满足\(|z+3i|+|z-3i|=6\),那么\(|z+1+i|\)的最小值是\(\underline{\quad \quad}\) .
 

12.满足\(z+\dfrac{5}{z}\)是实数,且\(z+3\)的实部与虚部是相反数的虚数\(z\)是否存在?若存在,求出虚数z;若不存在,请说明理由.
 

参考答案

  1. 答案 \(D\)
    解析 \(z_1+z_2=(2+i)+(3+ai)=5+(a+1)i\)\(z_1+z_2\)对应的点在实轴上,
    \(z_1+z_2\)为实数,因此\(a+1=0\)\(a=-1\)

  2. 答案 \(B\)
    解析\(\overrightarrow{A B}\)对应的复数为\((1+3i)-(1+i)=2i\),故 \(|\overrightarrow{A B}|=|2 i|=2\)

  3. 答案 \(B\)
    解析\(|z-1|=|z+1|\)\(z\)对应的点的轨迹是两点\((1,0)\)\((-1,0)\)连线的垂直平分线,即虚轴.

  4. 答案 \(C\)
    解析\(z_1\),\(z_2\)是复数,得
    在①中,若\(|z_1-z_2 |=0\),则\(z_1\),\(z_2\)的实部和虚部都相等, \(\therefore \overline{z_1}=\overline{z_2}\),故①正确;
    在②中,若 \(z_1=\overline{z_2}\),则\(z_1\),\(z_2\)的实数相等,虚部互为相反数, \(\therefore \overline{z_1}=z_2\),故②正确;
    在③中,若\(|z_1 |=|z_2 |\),则 \(\left.\left|z_1 \cdot \overline{z_1}=z_2 \cdot \overline{z_2}=\right| z_1\right|^2\),故③正确;
    在④中,若\(|z_1 |=|z_2 |\),则由复数的模的性质得 \(z_1^2 \neq z_2^2\)
    \(|1-i|=|1+i|=\sqrt{2}\),但\((1-i)^2=-2i≠(1+i)^2=2i\),故④不正确.
    故选 \(C\)

  5. 答案 \(B\)
    解析 \(\because z=\dfrac{8-i}{2+3 i}=\dfrac{(8-i)(2-3 i)}{(2+3 i)(2-3 i)}=\dfrac{13-26 i}{13}=1-2 i\)
    \(\therefore\)复数\(z\)在复平面内对应的点的坐标为\((1,-2)\),在第四象限;
    \(|z|=\sqrt{5}\)\(z\)的虚部为\(-2\)\(\bar{z}=1+2i\)
    故①②正确;③④错误.
    故选\(B\)

  6. 答案 \(3i\)\(-3i\)
    解析\(z=x+yi(x,y∈R)\),则有\(\bar{z}=x-yi\)
    因此 \(\left\{\begin{array}{l} x^2+y^2=9 \\ x+y i+x-y i=0 \end{array}\right.\),解得\(\left\{\begin{array}{l} x=0 \\ y=3 \end{array}\right.\)\(\left\{\begin{array}{l} x=0, \\ y=-3 \end{array}\right.\).
    \(\therefore z=3i\)\(-3i\).

  7. 答案 \(4\)
    解析 \(\dfrac{x}{1-i}+\dfrac{y}{1-2 i}=\dfrac{5}{1-3 i}\)\(\Rightarrow \dfrac{x(1+i)}{(1-i)(1+i)}+\dfrac{y(1+2 i)}{(1+2 i)(1-2 i)}=\dfrac{5(1+3 i)}{(1-3 i)(1+3 i)}\)
    \(\Rightarrow \dfrac{1}{2} x(1+i)+\dfrac{1}{5} y(1+2 i)=\dfrac{1}{2}(1+3 i) \Rightarrow\)\(\left\{\begin{array}{l} \dfrac{1}{2} x+\dfrac{1}{5} y=\dfrac{1}{2} \\ \dfrac{1}{2} x+\dfrac{2}{5} y=\dfrac{3}{2} \end{array}\right.\)
    解得 \(\left\{\begin{array}{l} x=-1 \\ y=5 \end{array}\right.\)
    \(\therefore x+y=4\)

  8. 答案 \(-1+i\)\(-1-i\)
    解析 \(\because x^2+2x+2=0\)\(\therefore\) 配方得\((x+1)^2=-1\)
    \(\therefore x+1=±i\),即\(x_1=-1-i\)\(x_2=-1+i\).

  9. 答案 \(-1\)
    解析 \(z_1-z_2=\left(a^2-a-2\right)+\left(a-4+a^2-2\right) i(a \in R)\)为纯虚数,
    \(\therefore\left\{\begin{array}{l} a^2-a-2=0 \\ a^2+a-6 \neq 0 \end{array}\right.\),解得\(a=-1\)

  10. 答案 \(3\)
    解析依题意\(|z|=2\),所以\(z\)对应的点在以原点为圆心,\(2\)为半径的圆上,
    \(|z-i|\)表示z对应的点与\((0,1)\)点间的距离,显然这个距离的最大值是\(1+2=3\)

  11. 答案 \(1\)
    解析复数\(z\)满足\(|z+3i|+|z-3i|=6\)
    \(\therefore z\)的几何意义是以\(A(0,3)\)\(B(0,-3)\)为端点的线段\(AB\)
    \(|z+1+i|=|z-(-1-i)|\)的几何意义为\(AB\)上的点到\(C(-1,-1)\)的距离,
    则由图象知\(C\)到线段\(AB\)的距离的最小值为\(1\)
    故答案为 \(1\)

  12. 答案 存在虚数\(z=-1-2i\)\(z=-2-i\)满足题设条件
    解析设虚数\(z=x+yi(x,y∈R\),且\(y≠0)\)
    \(z+\dfrac{5}{z}=x+y i+\dfrac{5}{x+y i}=x+\dfrac{5 x}{x^2+y^2}+\left(y-\dfrac{5 y}{x^2+y^2}\right) i\)
    \(z+3=x+3+y i\),
    由已知得 \(\left\{\begin{array}{l} y-\dfrac{5 y}{x^2+y^2}=0 \\ x+3=-y \end{array}\right.\),又\(\because y≠0\)
    \(\therefore\left\{\begin{array}{l} x^2+y^2=5 \\ x+y=-3 \end{array}\right.\),解得 \(\left\{\begin{array}{l} x=-1 \\ y=-2 \end{array}\right.\)\(\left\{\begin{array}{l} x=-2 \\ y=-1 \end{array}\right.\)
    \(\therefore\) 存在虚数\(z=-1-2i\)\(z=-2-i\)满足题设条件.
     

【B组---提高题】

1.已知 \(\dfrac{(1+i)^{2 n}}{1-i}+\dfrac{(1-i)^{2 n}}{1+i}=2^n\),则最小正整数\(n\)\(\underline{\quad \quad}\)
 

2.已知\(|z_i |+|z_i-2|=3\)\(z_i∈C\),\(i=1,2\)\(|z_1-z_2 |=2\),则\(|z_1 |+|z_2 |\)的最大值为\(\underline{\quad \quad}\)
 

3.设\(z\)是虚数, \(\omega=z+\dfrac{1}{z}\)是实数,且\(-1<ω<2\)
  (1)求\(|z|\)的值及\(z\)的实部的取值范围;
  (2)设 \(u=\dfrac{1-z}{1+z}\),求证:\(u\)为纯虚数;
  (3)求\(ω-u^2\)的最小值.
 
 

参考答案

  1. 答案 \(3\)
    解析 原等式可化为 \(\dfrac{(1+i)^{2 n} \cdot(1+i)}{2}+\dfrac{(1-i)^{2 n} \cdot(1-i)}{2}=2^n\)
    \(\left[(1+i)^2\right]^n \cdot(1+i)+\left[(1-i)^2\right]^n \cdot(1-i)=2 \cdot 2^n\)
    \((2i)^n (1+i)+(-2i)^n (1-i)=2⋅2^n\)
    \(2^n \cdot i^n(1+i)+2^n(-i)^n(1-i)=2 \cdot 2^n\)
    \(\therefore i^n [(1+i)+(-1)^n (1-i)]=2\)
    \(n=2k(k∈N^* )\),则\(i^{2k} [(1+i)+(1-i)]=2\)
    \(\therefore i^{2 k}=1\)\(\therefore k_{\min }=2\),从而有 \(n_{\min }=4\)
    \(n=2k-1(k∈N^* )\),则 \(i^{2 k-1}[(1+i)-(1-i)]=2\)
    \(2 i^{2 k}=2\)\(\therefore i^{2 k}=1\)
    \(\therefore k_{\min }=2\),从而有 \(n_{\min }=3\)
    \(\therefore\) 对于\(n∈N^*\)时,最小正整数为\(3\)
  2. 答案 \(4\)
    解析 由题意,可知\(|z_1 |+|z_1-2|=3\),\(|z_2 |+|z_2-2|=3\)
    \(6=|z_1 |+|z_2 |+|z_1-2|+|z_2-2|\)\(≥|z_1 |+|z_2 |+|z_1-z_2 |=|z_1 |+|z_2 |+2\)
    \(\therefore |z_1 |+|z_2 |≤4\)
    \(|z_1 |+|z_2 |\)的最大值为\(4\)
    故答案为\(4\)
  3. 答案 (1) \(\left(-\dfrac{1}{2}, 1\right)\) ;(2)略;(3)\(1\)
    解析 (1)解:\(\because z\)是虚数,
    \(\therefore\)可设\(z=x+yi\)\(x\)\(y∈R\),且\(y≠0\)
    \(\therefore \omega=z+\dfrac{1}{z}=x+y i+\dfrac{1}{x+y i}=x+y i+\dfrac{x-y i}{x^2+y^2}\)
    \(=x+\dfrac{x}{x^2+y^2}+\left(y-\dfrac{y}{x^2+y^2}\right)\)
    \(\because ω\)是实数且\(y≠0\)\(\therefore y-\dfrac{y}{x^2+y^2}=0\)
    \(\therefore x^2+y^2=1\),即\(|z|=1\).此时\(ω=2x\)
    \(\because -1<ω<2\)\(\therefore -1<2x<2\),从而有 \(-\dfrac{1}{2}<x<1\)
    \(z\)的实部的取值范围是\(\left(-\dfrac{1}{2}, 1\right)\)
    (2)证明: \(u=\dfrac{1-z}{1+z}=\dfrac{1-(x+y i)}{1+(x+y i)}=\dfrac{(1-x-y i)(1+x-y i)}{(1+x)^2+y^2}\)\(=\dfrac{1-x^2-y^2-2 y i}{(1+x)^2+y^2}=-\dfrac{y}{1+x} i\)
    \(\because x \in\left(-\dfrac{1}{2}, 1\right)\)\(y≠0\)
    \(y≠0\)\(\therefore u\)为纯虚数.
    (3)解: \(\omega-u^2=2 x-\left(-\dfrac{y}{1+x} i\right)^2=2 x+\left(\dfrac{y}{1+x}\right)^2=2 x+\dfrac{1-x^2}{(1+x)^2}\)
    \(=2 x+\dfrac{1-x}{1+x}=2 x-1+\dfrac{2}{1+x}=2(x+1)+\dfrac{2}{1+x}-3\)
    \(\because-\dfrac{1}{2}<x<1\)\(\therefore 1+x>0\)
    于是 \(\omega-u^2=2(x+1)+\dfrac{2}{1+x}-3 \geq 2 \sqrt{2(x+1) \cdot \dfrac{2}{1+x}}-3=1\)
    当且仅当 \(2(x+1)=\dfrac{2}{1+x}\),即\(x=0\)时等号成立.
    \(\therefore ω-u^2\)的最小值为\(1\),此时\(z=±i\)
     

【C组---拓展题】

1.已知\(z_1\),\(z_2∈C\)满足\(z_1\cdot z_2=1\)\(z_1+z_2=-1\),则\(z_1-z_2\)的实部是\(\underline{\quad \quad}\)
 

2.若复数\(z\)满足\(|z+\sqrt{3}+i|≤1\),求:
  (1) \(|z|\)的最大值和最小值;
  (2) \(|z-1|^2+|z+1|^2\)的最大值和最小值;
  (3) \(|z-\sqrt{3}|^2+|z-2 i|^2\)的最大值和最小值.
 
 
 

参考答案

  1. 答案 \(0\)
    解析 由题意可设,\(z_1=m+bi\),\(z_2=n-bi(m,n,b∈R)\)
    \(z_1\cdot z_2=1,z_1+z_2=-1\)
    \((m+bi)(n-bi)=mn+b^2+(nb-mb)i=1\),\(m+n=-1\)
    \(\left\{\begin{array}{l} m n+b^2=1 \\ b(n-m)=0 \\ m+n=-1 \end{array}\right.\),解得 \(\left\{\begin{array}{l} m=-\dfrac{1}{2} \\ n=-\dfrac{1}{2} \\ b=-\dfrac{\sqrt{3}}{2} \end{array}\right.\)\(\left\{\begin{array}{l} m=-\dfrac{1}{2} \\ n=-\dfrac{1}{2} \\ b=\dfrac{\sqrt{3}}{2} \end{array}\right.\)
    \(\therefore m-n=0\)
    \(z_1-z_2\)的实部是\(0\)
  2. 答案 (1)最大值为\(3\),最小值为\(1\);(2) 最大值为\(20\),最小值为\(4\)
    (3) 最大值为 \(27+2 \sqrt{43}\),最小值为 \(27-2 \sqrt{43}\)
    解析(1)如图①所示: \(|\overrightarrow{O M}|=\sqrt{(-\sqrt{3})^2+(-1)^2}=2\)
    \(\therefore|z|_{\max }=2+1=3\)_, _\(|z|_{\min }=2-1=1\)
    image.png
    (2) \(|z-1|^2+|z+1|^2=2|z|^2+2\)
    \(\therefore|z-1|^2+|z+1|^2\)最大值为\(20\),最小值为\(4\)
    (3)如图②,在圆面上任取一点\(P\),与复数\(z_A=\sqrt{3}\)\(z_B=2i\)对应点\(A\)\(B\)相连,
    得向量\(\overrightarrow{P A}\), \(\overrightarrow{P B}\),再以\(\overrightarrow{P A}\), \(\overrightarrow{P B}\)为邻边作平行四边形将问题再次转化为(1)的类型.
    \(z_A=\sqrt{3}\)\(z_B=2i\)\(P\)为圆面上任一点,\(z_P=z\)
    \(2|\overrightarrow{P A}|^2+2|\overrightarrow{P B}|^2=|\overrightarrow{A B}|^2+\left(2 \mid \overrightarrow{P O^{\prime}}\right)^2=7+4\left|\overrightarrow{P O^{\prime}}\right|^2\)
    (平行四边形四条边的平方和等于对角线的平方和),
    \(\therefore|z-\sqrt{3}|^2+|z-2 i|^2=\dfrac{1}{2}\left(7+4\left|z-\dfrac{\sqrt{3}}{2}-i\right|^2\right)\)
    \(\left|z-\dfrac{\sqrt{3}}{2}-i\right|_{\max }=\left|O^{\prime} M\right|+1=1+\dfrac{\sqrt{43}}{2}\)\(\left|z-\dfrac{\sqrt{3}}{2}-i\right|_{\min }=\mid O^{\prime} M-1=\dfrac{\sqrt{43}}{2}-1\)
    \(\therefore|z-\sqrt{3}|^2+|z-2 i|^2\)的最大值为 \(27+2 \sqrt{43}\),最小值为 \(27-2 \sqrt{43}\)
    image.png