Numpy手撸神经网络实现线性回归

发布时间 2023-10-06 09:32:10作者: 海王大人

Numpy手撸神经网络实现线性回归

简介

在深度学习理论学习之后,我们常常会直接使用深度学习框架(如PaddlePaddle、PyTorch或TensorFlow)来构建模型,而忽略了底层各种层结构的实现。但对于深度学习的学习者来说,是否能够亲手编写一个简单的模型呢?本文将介绍如何使用NumPy手动实现一个神经网络模型来进行线性回归任务。

目标

本文的目标是使用手动实现的神经网络模型来拟合目标曲线,其中目标曲线由函数f(x) = sin(x)生成。

data

拟合结果如下图所示:

拟合结果图

实现思路

在深度学习框架中,数据通常以张量(tensor)的形式进行处理,但为了简化起见,我们将数据的输入和输出都使用NumPy的ndarray格式传递。本节将包含以下主要类的实现:

1. Tensor和初始化

首先,我们需要定义一个名为Tensor的类,用于保存数据和梯度。此类具有data属性用于存储数据和grad属性用于存储梯度。

import numpy as np

class Tensor:
    def __init__(self, shape):
        self.data = np.zeros(shape=shape, dtype=np.float32) # 用于存放数据
        self.grad = np.zeros(shape=shape, dtype=np.float32) # 用于存放梯度

    def clear_grad(self):
        self.grad = np.zeros_like(self.grad)

    def __str__(self):
        return "Tensor shape: {}, data: {}".format(self.data.shape, self.data)

我们还定义了一个初始化器(Initializer)基类,以及两种初始化器:ConstantNormal。这些初始化器用于初始化层的参数。

2. Layer

在深度学习中,层是神经网络的基本组件。我们实现了两种层:全连接层(Linear)和ReLU激活函数(ReLU)。

# 为了使层能够组建起来,实现前向传播和反向传播,首先定义层的基类Layer
# Layer的几个主要方法说明:
#   forward: 实现前向传播
#   backward: 实现反向传播
#   parameters: 返回该层的参数,传入优化器进行优化

class Layer:
    def __init__(self, name='layer', *args, **kwargs):
        self.name = name

    def forward(self, *args, **kwargs):
        raise NotImplementedError

    def backward(self):
        raise NotImplementedError

    def parameters(self):
        return []

    def __call__(self, *args, **kwargs):
        return self.forward(*args, **kwargs)

    def __str__(self):
        return self.name


class Linear(Layer):
    """
    input X, shape: [N, C]
    output Y, shape: [N, O]
    weight W, shape: [C, O]
    bias b, shape: [1, O]
    grad dY, shape: [N, O]
    forward formula:
        Y = X @ W + b   # @表示矩阵乘法
    backward formula:
        dW = X.T @ dY
        db = sum(dY, axis=0)
        dX = dY @ W.T
    """
    def __init__(
        self,
        in_features,
        out_features,
        name='linear',
        weight_attr=Normal(),
        bias_attr=Constant(),
        *args,
        **kwargs
        ):
        super().__init__(name=name, *args, **kwargs)
        self.weights = Tensor((in_features, out_features))
        self.weights.data = weight_attr(self.weights.data.shape)
        self.bias = Tensor((1, out_features))
        self.bias.data = bias_attr(self.bias.data.shape)
        self.input = None

    def forward(self, x):
        self.input = x
        output = np.dot(x, self.weights.data) + self.bias.data
        return output

    def backward(self, gradient):
        self.weights.grad += np.dot(self.input.T, gradient)  # dy / dw
        self.bias.grad += np.sum(gradient, axis=0, keepdims=True)  # dy / db 
        input_grad = np.dot(gradient, self.weights.data.T)  # dy / dx
        return input_grad

    def parameters(self):
        return [self.weights, self.bias]

    def __str__(self):
        string = "linear layer, weight shape: {}, bias shape: {}".format(self.weights.data.shape, self.bias.data.shape)
        return string


class ReLU(Layer):
    """
    forward formula:
        relu = x if x >= 0
             = 0 if x < 0
    backwawrd formula:
        grad = gradient * (x > 0)
    """
    def __init__(self, name='relu', *args, **kwargs):
        super().__init__(name=name, *args, **kwargs)
        self.activated = None

    def forward(self, x):
        x[x < 0] = 0             
        self.activated = x
        return self.activated

    def backward(self, gradient):
        return gradient * (self.activated > 0)  

这些层具有前向传播和反向传播的功能,以及参数的存储。

3. 模型组网

在这一部分,我们定义了一个名为Sequential的类,用于将多个层按顺序组成神经网络模型。该类允许我们逐层前向传播和反向传播。

# 模型组网的功能是将层串起来,实现数据的前向传播和梯度的反向传播
# 添加层的时候,按照顺序添加层的参数
# Sequential方法说明:
#   add: 向组网中添加层
#   forward: 按照组网构建的层顺序,依次前向传播
#   backward: 接收损失函数的梯度,按照层的逆序反向传播
class Sequential:
    def __init__(self, *args, **kwargs):
        self.graphs = []
        self._parameters = []
        for arg_layer in args:
            if isinstance(arg_layer, Layer):
                self.graphs.append(arg_layer)
                self._parameters += arg_layer.parameters()

    def add(self, layer):
        assert isinstance(layer, Layer), "The type of added layer must be Layer, but got {}.".format(type(layer))
        self.graphs.append(layer)
        self._parameters += layer.parameters()

    def forward(self, x):
        for graph in self.graphs:
            x = graph(x)
        return x

    def backward(self, grad):
        # grad backward in inverse order of graph
        for graph in self.graphs[::-1]:
            grad = graph.backward(grad)

    def __call__(self, *args, **kwargs):
        return self.forward(*args, **kwargs)

    def __str__(self):
        string = 'Sequential:\n'
        for graph in self.graphs:
            string += graph.__str__() + '\n'
        return string

    def parameters(self):
        return self._parameters

4. 优化器

优化器用于根据梯度来更新模型的参数。我们实现了带有动量的随机梯度下降优化器(SGD)。

# 优化器主要完成根据梯度来优化参数的任务,其主要参数有学习率和正则化类型和正则化系数
# Optimizer主要方法:
#   step: 梯度反向传播后调用,该方法根据计算出的梯度,对参数进行优化
#   clear_grad: 模型调用backward后,梯度会进行累加,如果已经调用step优化过参数,需要将使用过的梯度清空
#   get_decay: 根据不同的正则化方法,计算出正则化惩罚值
class Optimizer:
    """
    optimizer base class.
    Args:
        parameters (Tensor): parameters to be optimized.
        learning_rate (float): learning rate. Default: 0.001.
        weight_decay (float): The decay weight of parameters. Defaylt: 0.0.
        decay_type (str): The type of regularizer. Default: l2.
    """
    def __init__(self, parameters, learning_rate=0.001, weight_decay=0.0, decay_type='l2'):
        assert decay_type in ['l1', 'l2'], "only support decay_type 'l1' and 'l2', but got {}.".format(decay_type)
        self.parameters = parameters
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.decay_type = decay_type
        
    def step(self):
        raise NotImplementedError

    def clear_grad(self):
        for p in self.parameters:
            p.clear_grad()

    def get_decay(self, g):
        if self.decay_type == 'l1':
            return self.weight_decay
        elif self.decay_type == 'l2':
            return self.weight_decay * g

# 基本的梯度下降法为(不带正则化):
# W = W - learn_rate * dW
# 带动量的梯度计算方法(减弱的梯度的随机性):
# dW = (momentum * v) + (1 - momentum) * dW
class SGD(Optimizer):
    def __init__(self, momentum=0.9, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.momentum = momentum
        self.velocity = []
        for p in self.parameters:
            self.velocity.append(np.zeros_like(p.grad))

    def step(self):
        for p, v in zip(self.parameters, self.velocity):
            decay = self.get_decay(p.grad)
            v = self.momentum * v + p.grad + decay # 动量计算
            p.data = p.data - self.learning_rate * v

5. 损失函数

我们定义了均方误差损失函数(MSE),用于衡量模型预测和真实值之间的差异。

# 优化器主要完成根据梯度来优化参数的任务,其主要参数有学习率和正则化类型和正则化系数
# Optimizer主要方法:
#   step: 梯度反向传播后调用,该方法根据计算出的梯度,对参数进行优化
#   clear_grad: 模型调用backward后,梯度会进行累加,如果已经调用step优化过参数,需要将使用过的梯度清空
#   get_decay: 根据不同的正则化方法,计算出正则化惩罚值
class Optimizer:
    """
    optimizer base class.
    Args:
        parameters (Tensor): parameters to be optimized.
        learning_rate (float): learning rate. Default: 0.001.
        weight_decay (float): The decay weight of parameters. Defaylt: 0.0.
        decay_type (str): The type of regularizer. Default: l2.
    """
    def __init__(self, parameters, learning_rate=0.001, weight_decay=0.0, decay_type='l2'):
        assert decay_type in ['l1', 'l2'], "only support decay_type 'l1' and 'l2', but got {}.".format(decay_type)
        self.parameters = parameters
        self.learning_rate = learning_rate
        self.weight_decay = weight_decay
        self.decay_type = decay_type
        
    def step(self):
        raise NotImplementedError

    def clear_grad(self):
        for p in self.parameters:
            p.clear_grad()

    def get_decay(self, g):
        if self.decay_type == 'l1':
            return self.weight_decay
        elif self.decay_type == 'l2':
            return self.weight_decay * g

# 基本的梯度下降法为(不带正则化):
# W = W - learn_rate * dW
# 带动量的梯度计算方法(减弱的梯度的随机性):
# dW = (momentum * v) + (1 - momentum) * dW
class SGD(Optimizer):
    def __init__(self, momentum=0.9, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.momentum = momentum
        self.velocity = []
        for p in self.parameters:
            self.velocity.append(np.zeros_like(p.grad))

    def step(self):
        for p, v in zip(self.parameters, self.velocity):
            decay = self.get_decay(p.grad)
            v = self.momentum * v + p.grad + decay # 动量计算
            p.data = p.data - self.learning_rate * v

6. 数据集和数据加载

我们还实现了DatasetBatchSamplerDataLoader类,用于加载和处理数据。

# 这里仿照PaddlePaddle,Dataset需要实现__getitem__和__len__方法
class Dataset:
    def __init__(self, *args, **kwargs):
        pass

    def __getitem__(self, idx):
        raise NotImplementedError("'{}' not implement in class {}"
                                  .format('__getitem__', self.__class__.__name__))

    def __len__(self):
        raise NotImplementedError("'{}' not implement in class {}"
                                  .format('__len__', self.__class__.__name__))


# 根据dataset和一些设置,生成每个batch在dataset中的索引
class BatchSampler:
    def __init__(self, dataset=None, shuffle=False, batch_size=1, drop_last=False):
        self.batch_size = batch_size
        self.drop_last = drop_last
        self.shuffle = shuffle

        self.num_data = len(dataset)
        if self.drop_last or (self.num_data % batch_size == 0):
            self.num_samples = self.num_data // batch_size
        else:
            self.num_samples = self.num_data // batch_size + 1
        indices = np.arange(self.num_data)
        if shuffle:
            np.random.shuffle(indices)
        if drop_last:
            indices = indices[:self.num_samples * batch_size]
        self.indices = indices

    def __len__(self):
        return self.num_samples

    def __iter__(self):
        batch_indices = []
        for i in range(self.num_samples):
            if (i + 1) * self.batch_size <= self.num_data:
                for idx in range(i * self.batch_size, (i + 1) * self.batch_size):
                    batch_indices.append(self.indices[idx])
                yield batch_indices
                batch_indices = []
            else:
                for idx in range(i * self.batch_size, self.num_data):
                    batch_indices.append(self.indices[idx])
        if not self.drop_last and len(batch_indices) > 0:
            yield batch_indices


# 根据sampler生成的索引,从dataset中取数据,并组合成一个batch
class DataLoader:
    def __init__(self, dataset, sampler=BatchSampler, shuffle=False, batch_size=1, drop_last=False):
        self.dataset = dataset
        self.sampler = sampler(dataset, shuffle, batch_size, drop_last)

    def __len__(self):
        return len(self.sampler)

    def __call__(self):
        self.__iter__()

    def __iter__(self):
        for sample_indices in self.sampler:
            data_list = []
            label_list = []
            for indice in sample_indices:
                data, label = self.dataset[indice]
                data_list.append(data)
                label_list.append(label)
            yield np.stack(data_list, axis=0), np.stack(label_list, axis=0)

线性回归示例

在本节中,我们使用上述定义的类来构建一个简单的神经网络模型,并进行线性回归示例。

1. 提取数据

首先,我们从数据集中提取训练数据,这里使用了一个预先生成的包含目标函数f(x) = sin(x) + 噪声的数据集。

# 提取训练数据
!unzip -oq ~/data/data119921/sin_data.zip

2. 查看数据分布

我们绘制了原始数据的分布图。

import matplotlib.pyplot as plt
%matplotlib inline

x_path = "x.npy"
y_path = "y.npy"

X = np.load(x_path)
Y = np.load(y_path)

plt.scatter(X, Y)

3. 搭建模型,设置超参数

我们定义了一个简单的神经网络模型,包括线性层和ReLU激活函数,并设置了超参数。

# 定义超参数
epoches = 1000
batch_size = 4
learning_rate = 0.01
weight_decay = 0.0
train_number = 100  # 选择的训练数据数量,总共200,这里仅挑选一部分训练,以避免过拟合

# 创建线性回归模型
model = Sequential(
    Linear(1, 16, name='linear1'),
    ReLU(name='relu1'),
    Linear(16, 64, name='linear2'),
    ReLU(name='relu2'),
    Linear(64, 16, name='linear3'),
    Re

LU(name='relu3'),
    Linear(16, 1, name='linear4'),
)
opt = SGD(parameters=model.parameters(), learning_rate=learning_rate, weight_decay=weight_decay, decay_type='l2')
loss_fn = MSE()

print(model)

4. 训练

我们使用训练数据集对模型进行训练。

# 挑选部分数据进行训练,绘制数据分布图
indexes = np.arange(X.shape[0])
train_indexes = np.random.choice(indexes, train_number)
X = X[train_indexes]
Y = Y[train_indexes]
plt.scatter(X, Y)

# 构建数据集和数据加载器,开始训练
train_dataset = LinearDataset(X, Y)
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, drop_last=True)

for epoch in range(1, epoches):
    losses = []
    for x, y in train_dataloader:
        pred = model(x)
        loss = loss_fn(pred, y)
        losses.append(loss)

        grad = loss_fn.backward()
        model.backward(grad)

        opt.step()
        opt.clear_grad()
    print("epoch: {}. loss: {}".format(epoch, np.array(losses).mean()))

5. 验证效果

训练结束后,我们生成一组密集的验证点,绘制曲线以查看模型效果。

# 生成验证点
val_number = 500
X_val = np.linspace(-np.pi, np.pi, val_number).reshape(val_number, 1)
Y_val = np.sin(X_val) * 2
val_dataset = LinearDataset(X_val, Y_val)
val_dataloader = DataLoader(val_dataset, shuffle=False, batch_size=2, drop_last=False)
all_pred = []
for x, y in val_dataloader:
    pred = model(x)
    all_pred.append(pred)
all_pred = np.vstack(all_pred)

# 绘制真实曲线和模型预测曲线
plt.plot(X_val, Y_val, color='green', label='true')
plt.plot(X_val, all_pred, color='red', label='predict')
plt.legend()
plt.show()

# 打印模型权重
for g in model.graphs:
    try:
        print(g.name, "  weights: ", g.weights.data)
        print(g.name, "  bias: ", g.bias.data)
    except:
        # ReLU层没有参数
        pass

希望这篇文章对您有所帮助,让您更好地理解深度学习模型的构建和训练过程。如果您有任何问题或需要进一步的解释,请随时提出。

本文由mdnice多平台发布