AtCoder Regular Contest 154 E Reverse and Inversion

发布时间 2023-06-24 14:07:00作者: zltzlt

洛谷传送门

AtCoder 传送门

好题!

考虑如何更简洁地描述 \(\sum\limits_{i = 1}^n \sum\limits_{j = i + 1}^n [P_i > P_j] (j - i)\)。拆贡献,设 \(f_i = \sum\limits_{j = 1}^{i - 1} [P_j > P_i] - \sum\limits_{j = i + 1}^n [P_j < P_i]\),所求即为 \(\sum\limits_{i = 1}^n i \times f_i\)。注意到交换 \(i, i + 1\)\(f_i\) 无论如何都增加 \(1\)\(f_{i + 1}\) 无论如何都减少 \(1\)。并且 \(f_1 = 1 - P_1\)。可得 \(f_i = i - P_i\)。因此所求即为 \(\sum\limits_{i = 1}^n i \times (i - P_i) = \sum\limits_{i = 1}^n i^2 - \sum\limits_{i = 1}^n i \times P_i\)

\(Q_{P_i} = i\),后面项可转化成 \(\sum\limits_{i = 1}^n i \times Q_i\)。不妨计数转期望,计算 \(\sum\limits_{i = 1}^n i \times E(Q_i)\)。注意到,如果 \(Q_i\) 至少被操作 \(1\) 次,那么最后到达 \(j\)\(n - j + 1\) 的概率是相等的。因为位置 \(i\) 被换到位置 \(j\) 的方案数是 \(\min\{i, j, n - i + 1, n - j + 1\}\)。所以如果 \(Q_i\) 至少被操作了 \(1\) 次,\(E(Q_i) = \frac{n + 1}{2}\)

剩下的部分是平凡的。算出 \(m\) 次操作均不包含 \(Q_i\) 的概率即可。

时间复杂度 \(O(n \log m)\),瓶颈在快速幂。

code
// Problem: E - Reverse and Inversion
// Contest: AtCoder - AtCoder Regular Contest 154
// URL: https://atcoder.jp/contests/arc154/tasks/arc154_e
// Memory Limit: 1024 MB
// Time Limit: 2000 ms
// 
// Powered by CP Editor (https://cpeditor.org)

#include <bits/stdc++.h>
#define pb emplace_back
#define fst first
#define scd second
#define mems(a, x) memset((a), (x), sizeof(a))

using namespace std;
typedef long long ll;
typedef double db;
typedef unsigned long long ull;
typedef long double ldb;
typedef pair<ll, ll> pii;

const int maxn = 200100;
const ll mod = 998244353;
const ll inv2 = (mod + 1) / 2;

inline ll qpow(ll b, ll p) {
	ll res = 1;
	while (p) {
		if (p & 1) {
			res = res * b % mod;
		}
		b = b * b % mod;
		p >>= 1;
	}
	return res;
}

ll n, m, a[maxn];

void solve() {
	scanf("%lld%lld", &n, &m);
	ll ans = 0;
	for (int i = 1, x; i <= n; ++i) {
		scanf("%d", &x);
		a[x] = i;
		ans = (ans + 1LL * i * i % mod) % mod;
	}
	for (int i = 1; i <= n; ++i) {
		ll p = ((n - a[i]) * (n - a[i] + 1) / 2 + (a[i] - 1) * a[i] / 2) % mod * qpow(n * (n + 1) / 2 % mod, mod - 2) % mod;
		ans = (ans - (qpow(p, m) * a[i] % mod + (1 - qpow(p, m) + mod) % mod * (n + 1) % mod * inv2 % mod) % mod * i % mod + mod) % mod;
	}
	ans = ans * qpow(n * (n + 1) / 2 % mod, m) % mod;
	printf("%lld\n", ans);
}

int main() {
	int T = 1;
	// scanf("%d", &T);
	while (T--) {
		solve();
	}
	return 0;
}