带空气阻力的抛射体飞行运动轨迹

发布时间 2023-08-19 20:28:55作者: Champrin

带空气阻力的抛射体飞行运动轨迹

Write By Champrin From 2022-11-20 To 2022-11-
GUET Evolution Team Visual Group

在低速情况下,常用的空气阻力模型有两种:

  1. 空气阻力与速度的一次方成正比
  2. 空气阻力与速度的二次方成正比

论文《两种空气阻力模型的抛射体飞行轨迹研究 闵永林 陈池》指出:

  • 物体的速度低于\(200m/s\)时,可认为阻力与物体速度大小的平方成正比
  • 物体速度远小于低速炮弹(\(300m/s\))时,采用第一种模型;物体速度接近于低速炮弹时,采用第二种模型

对于42mm弹丸和飞镖的初射速都低于这两个值,因此对于文章中指出的,两种模型是否都能采用,需要进行验证采用哪种模型效果更好

在上赛季英雄视觉代码中,建立的是对42mm弹丸忽略了竖直方向上的空气阻力的方程,这或许对短距离来说影响不大,但是若要英雄进行远距离吊射,以及用于飞镖视觉当中,需要更高的准确性,需要建立更精确和更细致的方程


空气阻力与速度的一次方成正比

由牛顿第二定律:

\[\begin{aligned} ma_x & = - kv\cos{\theta} \\ ma_y & = - (mg + kv\sin{\theta}) \end{aligned} \]

也即:

\[\begin{aligned} m\frac{d^2x}{d^2t} & = - k\frac{dx}{dt} \\ m\frac{d^2y}{d^2t} & = -mg - k\frac{dy}{dt} \end{aligned} \]

也即:

\[\begin{aligned} m\frac{dv_x}{dt} & = - kv_x & \text{(1)}\\ m\frac{dv_y}{dt} & = -mg - kv_y & \text{(2)} \end{aligned} \]

速度与位移方程

\(\text{(1)}\)式分离变量,且两边同时积分,同时\(v_x > 0\)

\[\begin{aligned} \frac{dv_x}{v_x} & = - \frac{k}{m}dt \\ \int \frac{dv_x}{v_x} & = \int - \frac{k}{m}dt \\ \Rightarrow \ln{v_x} + C_{v_x} & = - \frac{k}{m}t \end{aligned} \]

注意到,当\(\, t = 0,\, x = x_0, y = y_0,\, v_x = v_0\cos{\theta},\, v_y = v_0\sin{\theta}\)
那么可解得\(C_{v_x}\)

\[ C_{v_x} = -\ln{v_x} = -\ln{v_0\cos{\theta}} \]

可得\(v_x\)

\[\begin{aligned} \ln{v_x} -\ln{v_0\cos{\theta}} & = - \frac{k}{m}t \\ \ln\frac{v_x}{v_0\cos{\theta}} & = - \frac{k}{m}t \\ \frac{v_x}{v_0\cos{\theta}} & = e^{- \frac{k}{m}t} \\ \Rightarrow v_x & = v_0\cos{\theta} \cdot e^{- \frac{k}{m}t} \qquad \text{(3)} \end{aligned} \]

对于\(v_x\),有:

\[\begin{aligned} v_x & = \frac{dx}{dt} \\ v_0\cos{\theta} \cdot e^{- \frac{k}{m}t} & = \frac{dx}{dt} \end{aligned} \]

分离变量,两边同时积分得:

\[\begin{aligned} \int dx & = \int v_0\cos{\theta} \cdot e^{- \frac{k}{m}t} dt \\ \int dx & = \int - \frac{m}{k} \cdot v_0\cos{\theta} \cdot e^{- \frac{k}{m}t} d(- \frac{k}{m}t) \\ \Rightarrow x + C_x & = - \frac{mv_0\cos{\theta}}{k}e^{- \frac{k}{m}t} \end{aligned} \]

注意到,当\(\, t = 0,\, x = x_0, y = y_0,\, v_x = v_0\cos{\theta},\, v_y = v_0\sin{\theta}\)
那么可解得\(C_x\)

\[\begin{aligned} x_0 + C_x & = - \frac{mv_0\cos{\theta}}{k} \\ C_x & = - \frac{mv_0\cos{\theta}}{k} - x_0 \end{aligned} \]

可得\(x\)

\[\begin{aligned} x - \frac{mv_0\cos{\theta}}{k} - x_0 & = - \frac{mv_0\cos{\theta}}{k}e^{- \frac{k}{m}t} \\ x & = x_0 - \frac{mv_0\cos{\theta}}{k}e^{- \frac{k}{m}t} + \frac{mv_0\cos{\theta}}{k} \\ \Rightarrow x & = x_0 + \frac{mv_0\cos{\theta}}{k}(1 - e^{- \frac{k}{m}t}) \qquad \text{(4)} \end{aligned} \]

同理,对\(\text{(2)}\)式分离变量,两边同时积分:

\[\begin{aligned} \frac{dv_y}{-g - \frac{k}{m}v_y} & = dt \\ \int \frac{dv_y}{-g - \frac{k}{m}v_y} & = \int dt \\ \int -\frac{m}{k}\frac{d(-g - \frac{k}{m}v_y)}{-g - \frac{k}{m}v_y} & = \int dt \\ \Rightarrow -\frac{m}{k}[\ln{(-g - \frac{k}{m}v_y)} + C_{v_y}] & = t \end{aligned} \]

注意到,当\(\, t = 0,\, x = x_0, y = y_0,\, v_x = v_0\cos{\theta},\, v_y = v_0\sin{\theta}\)
那么可解得\(C_{v_y}\)

\[ C_{v_y} = -\ln{(-g - \frac{k}{m}v_y)} = -\ln{(-g - \frac{k}{m}v_0\sin{\theta})} \]

可得\(v_y\)

\[\begin{aligned} -\frac{m}{k}[\ln{(-g - \frac{k}{m}v_y)} -\ln{(-g - \frac{k}{m}v_0\sin{\theta})}] & = t \\ \ln(\frac{-g - \frac{k}{m}v_y}{-g - \frac{k}{m}v_0\sin{\theta}}) & = -\frac{k}{m}t \\ \frac{-g - \frac{k}{m}v_y}{-g - \frac{k}{m}v_0\sin{\theta}} & = e^{-\frac{k}{m}t}\\ -g - \frac{k}{m}v_y & = (-g - \frac{k}{m}v_0\sin{\theta})e^{-\frac{k}{m}t} \\ v_y & = \frac{(-g - \frac{k}{m}v_0\sin{\theta})e^{-\frac{k}{m}t} + g}{- \frac{k}{m}} \\ \Rightarrow v_y & = (\frac{mg}{k} + v_0\sin{\theta})e^{-\frac{k}{m}t} - \frac{mg}{k} \qquad \text{(5)} \end{aligned} \]

对于\(v_y\),有:

\[\begin{aligned} v_y & = \frac{dy}{dt} \\ (\frac{mg}{k} + v_0\sin{\theta})e^{-\frac{k}{m}t} - \frac{mg}{k} & = \frac{dy}{dt} \end{aligned} \]

分离变量,两边同时积分得:

\[\begin{aligned} \int dy & = \int [(\frac{mg}{k} + v_0\sin{\theta})e^{-\frac{k}{m}t} - \frac{mg}{k}]dt \\ \int dy & = \int (\frac{mg}{k} + v_0\sin{\theta})e^{-\frac{k}{m}t}dt - \int \frac{mg}{k}dt \\ \int dy & = \int - \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta})e^{-\frac{k}{m}t}d(-\frac{k}{m}t) - \int \frac{mg}{k}dt \\ \Rightarrow y + C_y & = - \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta})e^{-\frac{k}{m}t} - \frac{mg}{k}t \end{aligned} \]

注意到,当\(\, t = 0,\, x = x_0, y = y_0,\, v_x = v_0\cos{\theta},\, v_y = v_0\sin{\theta}\)
那么可解得\(C_y\)

\[\begin{aligned} + y_0C_y = - \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta}) \\ C_y = - \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta}) - y_0 \end{aligned} \]

可得\(y\)

\[\begin{aligned} y - \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta}) - y_0 & = - \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta})e^{-\frac{k}{m}t} - \frac{mg}{k}t \\ y & = y_0 - \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta})e^{-\frac{k}{m}t} - \frac{mg}{k}t + \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta}) \\ y & = y_0 + \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta})(1 -e^{-\frac{k}{m}t}) - \frac{mg}{k}t \qquad \text{(6)} \end{aligned} \]

轨迹方程

\(\text{(4)}\)式可得:

\[\begin{aligned} x & = x_0 + \frac{mv_0\cos{\theta}}{k}(1 - e^{- \frac{k}{m}t}) \\ 1 - e^{- \frac{k}{m}t} & = \frac{k(x - x_0)}{mv_0\cos{\theta}} \qquad & \text{(7)} \\ e^{- \frac{k}{m}t} & = 1 - \frac{k(x - x_0)}{mv_0\cos{\theta}} \\ t & = \ln(1 - \frac{k(x - x_0)}{mv_0\cos{\theta}}) \\ t & = - \frac{m}{k}\ln(1 - \frac{k(x - x_0)}{mv_0\cos{\theta}}) \qquad & \text{(8)} \end{aligned} \]

联立\(\text{(6)}\text{(7)}\text{(8)}\)式,消去\(t\),可得轨迹方程:

\[\begin{aligned} y & = y_0 + \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta})(1 -e^{-\frac{k}{m}t}) - \frac{mg}{k}t \\ y & = y_0 + \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta})\frac{k(x - x_0)}{mv_0\cos{\theta}} + \frac{mg}{k}\frac{m}{k}\ln(1 - \frac{k(x - x_0)}{mv_0\cos{\theta}}) \\ y & = y_0 + (\frac{mg}{k} + v_0\sin{\theta})\frac{(x - x_0)}{v_0\cos{\theta}} + \frac{mg}{k}\frac{m}{k}\ln(1 - \frac{k(x - x_0)}{mv_0\cos{\theta}}) \\ y & = y_0 + (\frac{mg}{kv_0\cos{\theta}} + \tan{\theta})(x - x_0) + \frac{m^2g}{k^2}\ln(1 - \frac{k(x - x_0)}{mv_0\cos{\theta}}) \qquad \text{(9)} \end{aligned} \]

\(v_y = 0\),由式\((3)\)可得抛射体到达最高点的时间:

\[\begin{aligned} 0 & = (\frac{mg}{k} + v_0\sin{\theta})e^{-\frac{k}{m}t} - \frac{mg}{k} \\ (\frac{mg}{k} + v_0\sin{\theta})e^{-\frac{k}{m}t} & = \frac{mg}{k} \\ e^{-\frac{k}{m}t} & = \cfrac{\cfrac{mg}{k}}{\cfrac{mg}{k} + v_0\sin{\theta}} \\ -\frac{k}{m}t & = \ln{(\cfrac{\cfrac{mg}{k}}{\cfrac{mg}{k} + v_0\sin{\theta}})} \\ t & = -\frac{m}{k}\ln{(\cfrac{mg}{mg + kv_0\sin{\theta}})} \\ \end{aligned} \]

落回初始高度所需时间\(t\)

\(y = y_0\)为初始高度,那么令\(\text{(6)}\)式中\(y = y_0\)得:

\[\begin{aligned} y_0 & = y_0 + \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta})(1 -e^{-\frac{k}{m}t}) - \frac{mg}{k}t \\ 0 & = \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta})(1 -e^{-\frac{k}{m}t}) - \frac{mg}{k}t \\ 0 & = (\frac{mg}{k} + v_0\sin{\theta})(1 - e^{-\frac{k}{m}t}) - gt \\ gt & = (\frac{mg}{k} + v_0\sin{\theta})(1 - e^{-\frac{k}{m}t})\qquad \text{(10)} \end{aligned} \]

可见,这是一个超越方程,无法直接求出\(t\),那么可以想到展开\(e^{-\frac{k}{m}t}\)

展开\(e^{-\frac{k}{m}t}\)
\(t = 0\)处,把\(e^{-\frac{k}{m}t}\)展开成\(t\)的幂级数:
第一步:

\[f(0) = 1 ,f'(0) = (-\frac{k}{m})^1 ,f''(0) = (-\frac{k}{m})> ^2, ... ,f^{(n)}(0) = (-\frac{k}{m})^n \]

第二步:

\[ f(0) + f'(0)t + \frac{f''(0)}{2!}t^2 + ... + \frac{f^{(n)} (0)}{n!}t^n + ... \]

得级数:

\[ 1 + (-\frac{k}{m})t + \frac{(-\frac{k}{m})^2}{2!}t^2 > + ... + \frac{(-\frac{k}{m})^n}{n!}t^n + ... \]

\[ \sum_{n=0}^{\infty}\frac{(-\frac{k}{m})^n}{n!}t^n \]

求此级数收敛半径:

\[ \rho = \lim_{n \rarr \infty} \lvert \frac{a_{n + 1}}{a_n} \rvert = \lim_{n \rarr \infty} \lvert \frac{\frac{(-\frac{k}{m})^{n+1}}{(n+1)!}}{\frac{(-\frac{k}{m})^n}{n!}} \rvert = \lim_{n \rarr \infty} \lvert -\frac{k}{m(n + 1)} \rvert = 0 \]

因此,收敛半径\(R\)

\[ R = + \infty \]

进而利用余项\(R_n(t)\)的表达式,求得当\(t \in (-R, R)\)内时,余项\(R_n(t)\)的极限为0
因此:

\[ e^{-\frac{k}{m}t} = \sum_{n=0}^{\infty}\frac{(-\frac{k}{m})^n}{n!}t^n \qquad (-\infty \lt t \lt +\infty) \]

取展开式的二次项:

\[ e^{-\frac{k}{m}t} \approx 1 - \frac{k}{m}t + \frac{1}{2}(\frac{k}{m})^2t^2 \qquad \text{(11)} \]

联立\(\text{(10)}\text{(11)}\)式,得:

\[\begin{aligned} gt & = (\frac{mg}{k} + v_0\sin{\theta})(1 - 1 + \frac{k}{m}t - \frac{1}{2}(\frac{k}{m})^2t^2) \\ gt & = (\frac{mg}{k} + v_0\sin{\theta})(\frac{k}{m}t - \frac{1}{2}(\frac{k}{m})^2t^2) \\ g & = (\frac{mg}{k} + v_0\sin{\theta})(\frac{k}{m} - \frac{1}{2}(\frac{k}{m})^2t) \\ g & = (\frac{mg}{k} + v_0\sin{\theta})\frac{k}{m} - (\frac{mg}{k} + v_0\sin{\theta})\frac{1}{2}(\frac{k}{m})^2t \\ (\frac{mg}{k} + v_0\sin{\theta})\frac{1}{2}(\frac{k}{m})^2t & = (\frac{mg}{k} + v_0\sin{\theta})\frac{k}{m} - g \\ t & = \frac{(\frac{mg}{k} + v_0\sin{\theta})\frac{k}{m} - g}{(\frac{mg}{k} + v_0\sin{\theta})\frac{1}{2}(\frac{k}{m})^2} \\ t & = \frac{g + \frac{kv_0\sin{\theta}}{m} - g}{(\frac{mg}{k} + v_0\sin{\theta})\frac{1}{2}(\frac{k}{m})^2} \\ t & = \frac{\frac{kv_0\sin{\theta}}{m}}{(\frac{mg}{k} + v_0\sin{\theta})\frac{1}{2}(\frac{k}{m})^2} \\ t & = \frac{2v_0\sin{\theta}}{(\frac{mg}{k} + v_0\sin{\theta})\frac{k}{m}} \\ t & = \frac{2mv_0\sin{\theta}}{mg + kv_0\sin{\theta}} \qquad \text{(12)}\\ \end{aligned} \]

最大射程及其对应\(\theta\)

\(\text{(11)}\text{(12)}\)式带入\(\text{(4)}\),得:

\[\begin{aligned} x & = x_0 + \frac{mv_0\cos{\theta}}{k}(1 - e^{- \frac{k}{m}t}) \\ & = x_0 + \frac{mv_0\cos{\theta}}{k}(1 - 1 + \frac{k}{m}t - \frac{1}{2}(\frac{k}{m})^2t^2) \\ & = x_0 + v_0\cos{\theta}(t - \frac{1}{2}\frac{k}{m}t^2) \\ & = x_0 + v_0\cos{\theta} \cdot t \cdot (1 - \frac{k}{2m}t) \\ & = x_0 + v_0\cos{\theta} \frac{2mv_0\sin{\theta}}{mg + kv_0\sin{\theta}} (1 - \frac{k}{2m}\frac{2mv_0\sin{\theta}}{mg + kv_0\sin{\theta}}) \\ & = x_0 + \frac{2mv^2_0\sin{\theta}\cos{\theta}}{mg + kv_0\sin{\theta}} (1 - \frac{kv_0\sin{\theta}}{mg + kv_0\sin{\theta}}) \\ & = x_0 + \frac{2mv^2_0\sin{\theta}\cos{\theta}}{mg + kv_0\sin{\theta}} (\frac{mg + kv_0\sin{\theta}}{mg + kv_0\sin{\theta}} - \frac{kv_0\sin{\theta}}{mg + kv_0\sin{\theta}}) \\ & = x_0 + \frac{2mv^2_0\sin{\theta}\cos{\theta}}{mg + kv_0\sin{\theta}} \frac{mg}{mg + kv_0\sin{\theta}} \\ & = x_0 + \frac{m^2gv^2_0 \cdot 2\sin{\theta}\cos{\theta}}{(mg + kv_0\sin{\theta})^2} \\ & = x_0 + \frac{m^2gv^2_0\sin{2\theta}}{(mg + kv_0\sin{\theta})^2} \qquad \text{(13)}\\ \end{aligned} \]

要求最大射程,即求\(x\)的最大值,对\(\text{(13)}\)式利用求导法:\(\frac{dx}{d\theta} = 0\),求得\(x\)的最大值,及其对应\(\theta\)

\[\begin{aligned} \frac{dx}{d\theta} & = m^2gv^2_0(\frac{\sin{2\theta}}{(mg + kv_0\sin{\theta})^2})' \\ & = m^2gv^2_0(\frac{(\sin{2\theta})'(mg + kv_0\sin{\theta})^2 - \sin{2\theta}((mg + kv_0\sin{\theta})^2)'}{(mg + kv_0\sin{\theta})^4}) \\ & = m^2gv^2_0(\frac{2\cos{2\theta}(mg + kv_0\sin{\theta})^2 - \sin{2\theta}(2kv_0\cos{\theta}(mg + kv_0\sin{\theta}))}{(mg + kv_0\sin{\theta})^4}) \\ & = m^2gv^2_0(\frac{2\cos{2\theta}(mg + kv_0\sin{\theta})^2 - 2kv_0\sin{2\theta}\cos{\theta}(mg + kv_0\sin{\theta})}{(mg + kv_0\sin{\theta})^4}) \end{aligned} \]

\[ 2\cos{2\theta}(mg + kv_0\sin{\theta})^2 - 2kv_0\sin{2\theta}\cos{\theta}(mg + kv_0\sin{\theta}) = 0 \\ \cos{2\theta}(mg + kv_0\sin{\theta})^2 - kv_0\sin{2\theta}\cos{\theta}(mg + kv_0\sin{\theta}) = 0 \\ \Rightarrow 2mgv^2_0\cos^2\theta + b\cos\theta - mgv^2_0 = 0 \]


空气阻力与速度的二次方成正比

由牛顿第二定律:

\[\begin{aligned} ma_x & = - kv^2_x \\ ma_y & = - (mg + kv^2_y) \end{aligned} \]

也即:

\[\begin{aligned} m\frac{dv_x}{dt} & = - kv^2_x & \text{(1)}\\ m\frac{dv_y}{dt} & = -mg - kv^2_y & \text{(2)} \\ \end{aligned} \\ \]

速度与位移方程

\(\text{(1)}\)式分离变量,两边同时积分:

\[\begin{aligned} \frac{dv_x}{v^2_x} & = - \frac{k}{m}dt \\ \int \frac{dv_x}{v^2_x} & = \int - \frac{k}{m}dt \\ - \frac{1}{v_x} + C_{v_x} & = - \frac{k}{m}t \end{aligned} \]

注意到,当\(\, t = 0,\, x = x_0, y = y_0,\, v_x = v_0\cos{\theta},\, v_y = v_0\sin{\theta}\)
那么可解得\(C_{v_x}\)

\[ C_{v_x} = \frac{1}{v_x} = \frac{1}{v_0\cos{\theta}} \]

可得\(v_x\)

\[\begin{aligned} - \frac{1}{v_x} + \frac{1}{v_0\cos{\theta}} & = - \frac{k}{m}t \\ \frac{1}{v_x} & = \frac{1}{v_0\cos{\theta}} + \frac{k}{m}t \\ v_x & = \frac{1}{\frac{1}{v_0\cos{\theta}} + \frac{k}{m}t} \\ \Rightarrow v_x & = \frac{mv_0\cos{\theta}}{m + kv_0\cos{\theta}t} \qquad \text{(3)} \end{aligned} \]

对于\(v_x\),有:

\[\begin{aligned} v_x & = \frac{dx}{dt} \\ \frac{mv_0\cos{\theta}}{m + kv_0\cos{\theta}t} & = \frac{dx}{dt} \end{aligned} \]

分离变量,两边同时积分得:

\[\begin{aligned} \frac{dx}{mv_0\cos{\theta}} & = \frac{dt}{m + kv_0\cos{\theta}t} \\ \int \frac{dx}{mv_0\cos{\theta}} & = \int \frac{dt}{m + kv_0\cos{\theta}t} \\ \int \frac{dx}{mv_0\cos{\theta}} & = \int \frac{1}{kv_0\cos{\theta}}\frac{d(m + kv_0\cos{\theta}t)}{m + kv_0\cos{\theta}t} \\ \Rightarrow \frac{1}{mv_0\cos{\theta}}x + C_x & = \frac{1}{kv_0\cos{\theta}} \ln(m + kv_0\cos{\theta}t) \end{aligned} \]

注意到,当\(\, t = 0,\, x = x_0, y = y_0,\, v_x = v_0\cos{\theta},\, v_y = v_0\sin{\theta}\)
那么可解得\(C_x\)

\[\begin{aligned} \frac{1}{mv_0\cos{\theta}}x_0 + C_x & = \frac{1}{kv_0\cos{\theta}}\ln{m} \\ C_x & = \frac{1}{kv_0\cos{\theta}}\ln{m} - \frac{1}{mv_0\cos{\theta}}x_0\\ \end{aligned} \]

可得\(x\)

\[\begin{aligned} \frac{1}{mv_0\cos{\theta}}x + \frac{1}{kv_0\cos{\theta}}\ln{m} - \frac{1}{mv_0\cos{\theta}}x_0= \frac{1}{kv_0\cos{\theta}} \ln(m + kv_0\cos{\theta}t) \\ \frac{1}{mv_0\cos{\theta}}x = \frac{1}{kv_0\cos{\theta}} \ln(m + kv_0\cos{\theta}t) - \frac{1}{kv_0\cos{\theta}}\ln{m} + \frac{1}{mv_0\cos{\theta}}x_0 \\ \frac{1}{mv_0\cos{\theta}}x = \frac{1}{kv_0\cos{\theta}}(\ln(m + kv_0\cos{\theta}t) - \ln{m}) + \frac{1}{mv_0\cos{\theta}}x_0\\ \frac{1}{mv_0\cos{\theta}}x = \frac{1}{kv_0\cos{\theta}}\ln\frac{(m + kv_0\cos{\theta}t)}{m} + \frac{1}{mv_0\cos{\theta}}x_0\\ \Rightarrow x = \frac{m}{k}\ln(\frac{m + kv_0\cos{\theta}t}{m}) + x_0\qquad \text{(4)} \end{aligned} \]

同理,对\(\text{(2)}\)式分离变量和同时积分得,

\[\begin{aligned} m\frac{dv_y}{dt} = -mg - kv^2_y \\ \frac{dv_y}{dt} = -g - \frac{k}{m}v^2_y \\ \frac{dv_y}{-g - \frac{k}{m}v^2_y} = dt \end{aligned} \]

两边同时积分:

\[\begin{aligned} \int \frac{dv_y}{-g - \frac{k}{m}v^2_y} & = \int dt \\ \int \frac{dv_y}{-g - \frac{k}{m}v^2_y} & = \int dt \\ \int -\frac{mdv_y}{mg + kv^2_y} & = \int dt \\ -m\int \frac{dv_y}{mg + kv^2_y} & = \int dt \\ -m\int \frac{dv_y}{(\sqrt{mg})^2 + (\sqrt{k}v_y)^2} & = \int dt \\ -m\int \frac{dv_y}{1 + (\frac{\sqrt{k}v_y}{\sqrt{mg}})^2} & = \int dt \\ -m\frac{1}{(\sqrt{mg})^2}\int \frac{\sqrt{mg}}{\sqrt{k}}\frac{d(\frac{\sqrt{k}v_y}{\sqrt{mg}})}{1 + (\frac{\sqrt{k}v_y}{\sqrt{mg}})^2} & = \int dt \\ -m\frac{1}{(\sqrt{mg})^2}\frac{\sqrt{mg}}{\sqrt{k}}\int \frac{d(\frac{\sqrt{k}v_y}{\sqrt{mg}})}{1 + (\frac{\sqrt{k}v_y}{\sqrt{mg}})^2} & = \int dt \\ -m\frac{1}{(\sqrt{mg})^2}\frac{\sqrt{mg}}{\sqrt{k}}(\arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) + C_{v_y}) & = \int dt \\ -m\frac{1}{\sqrt{mg}}\frac{1}{\sqrt{k}}(\arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) + C_{v_y}) & = \int dt \\ -m\frac{\sqrt{mg}}{mg}\frac{1}{\sqrt{k}}(\arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) + C_{v_y}) & = \int dt \\ -\frac{\sqrt{mg}}{g\sqrt{k}}(\arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) + C_{v_y}) & = \int dt \\ \end{aligned} \]

得:

\[\begin{aligned} -m\frac{1}{(\sqrt{mg})^2}\frac{\sqrt{mg}}{\sqrt{k}}(\arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) + C_{v_y}) & = t \\ -m\frac{1}{\sqrt{mg}}\frac{1}{\sqrt{k}}(\arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) + C_{v_y}) & = t \\ -m\frac{\sqrt{mg}}{mg}\frac{1}{\sqrt{k}}(\arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) + C_{v_y}) & = t \\ -\frac{\sqrt{mg}}{g\sqrt{k}}(\arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) + C_{v_y}) & = t \\ \end{aligned} \]

注意到,当\(\, t = 0,\, x = x_0, y = y_0,\, v_x = v_0\cos{\theta},\, v_y = v_0\sin{\theta}\)
那么可解得\(C_{v_y}\)

\[ C_{v_y} = - \arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) = - \arctan(\frac{\sqrt{k}v_0\sin{\theta}}{\sqrt{mg}}) \]

注意到:

\[ \arctan A - \arctan B = \arctan\frac{A-B}{1 + AB} \\ \tan (\arctan A) = A \]

可得\(v_y\)

\[\begin{aligned} -\frac{\sqrt{mg}}{g\sqrt{k}}(\arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) - \arctan(\frac{\sqrt{k}v_0\sin{\theta}}{\sqrt{mg}})) & = t \\ \arctan\frac{(\frac{\sqrt{k}v_y}{\sqrt{mg}}) - (\frac{\sqrt{k}v_0\sin{\theta}}{\sqrt{mg}})}{1 + (\frac{\sqrt{k}v_y}{\sqrt{mg}})(\frac{\sqrt{k}v_0\sin{\theta}}{\sqrt{mg}})} & = -\frac{tg\sqrt{k}}{\sqrt{mg}} \\ \arctan\frac{\frac{\sqrt{k}}{\sqrt{mg}}(v_y - v_0\sin{\theta})}{1 + \frac{kv_yv_0\sin{\theta}}{mg}} & = -\frac{tg\sqrt{k}}{\sqrt{mg}} \\ \tan(\arctan\frac{\frac{\sqrt{k}}{\sqrt{mg}}(v_y - v_0\sin{\theta})}{1 + \frac{kv_yv_0\sin{\theta}}{mg}}) & = \tan(-\frac{tg\sqrt{k}}{\sqrt{mg}}) \\ \frac{\frac{\sqrt{k}}{\sqrt{mg}}(v_y - v_0\sin{\theta})}{1 + \frac{kv_yv_0\sin{\theta}}{mg}} & = \tan(-\frac{tg\sqrt{k}}{\sqrt{mg}}) \\ \frac{mg\frac{\sqrt{k}}{\sqrt{mg}}(v_y - v_0\sin{\theta})}{mg + kv_yv_0\sin{\theta}} & = \tan(-\frac{tg\sqrt{k}}{\sqrt{mg}}) \\ \frac{\sqrt{mgk}(v_y - v_0\sin{\theta})}{mg + kv_yv_0\sin{\theta}} & = \tan(-\frac{t\sqrt{mgk}}{m}) \\ \sqrt{mgk}(v_y - v_0\sin{\theta}) & = \tan(-\frac{t\sqrt{mgk}}{m})(mg + kv_yv_0\sin{\theta}) \\ \sqrt{mgk}v_y - \sqrt{mgk}v_0\sin{\theta} & = \tan(-\frac{t\sqrt{mgk}}{m})mg + \tan(-\frac{t\sqrt{mgk}}{m})kv_yv_0\sin{\theta} \\ \sqrt{mgk}v_y - \tan(-\frac{t\sqrt{mgk}}{m})kv_yv_0\sin{\theta} & = \tan(-\frac{t\sqrt{mgk}}{m})mg + \sqrt{mgk}v_0\sin{\theta} \\ v_y(\sqrt{mgk} - \tan(-\frac{t\sqrt{mgk}}{m})kv_0\sin{\theta}) & = \tan(-\frac{t\sqrt{mgk}}{m})mg + \sqrt{mgk}v_0\sin{\theta} \\ \Rightarrow v_y & = \frac{mg\tan(-\frac{t\sqrt{mgk}}{m}) + v_0\sin{\theta}\sqrt{mgk}}{\sqrt{mgk} - kv_0\sin{\theta}\tan(-\frac{t\sqrt{mgk}}{m})} \qquad \text{(5.1)} \end{aligned} \]

同时,还有另外一种形式:

\[\begin{aligned} -\frac{\sqrt{mg}}{g\sqrt{k}}(\arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) - \arctan(\frac{\sqrt{k}v_0\sin{\theta}}{\sqrt{mg}})) & = t \\ \arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) - \arctan(\frac{\sqrt{k}v_0\sin{\theta}}{\sqrt{mg}}) & = -\frac{tg\sqrt{k}}{\sqrt{mg}} \\ \arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) - \arctan(\frac{\sqrt{k}v_0\sin{\theta}}{\sqrt{mg}}) & = -t\sqrt{\frac{gk}{m}} \\ \arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}}) & = -t\sqrt{\frac{gk}{m}} + \arctan(\frac{\sqrt{k}v_0\sin{\theta}}{\sqrt{mg}})\\ \tan(\arctan(\frac{\sqrt{k}v_y}{\sqrt{mg}})) & = \tan(-t\sqrt{\frac{gk}{m}} + \arctan(\frac{\sqrt{k}v_0\sin{\theta}}{\sqrt{mg}}))\\ \frac{\sqrt{k}v_y}{\sqrt{mg}} & = \tan(-t\sqrt{\frac{gk}{m}} + \arctan(\frac{\sqrt{k}v_0\sin{\theta}}{\sqrt{mg}}))\\ \Rightarrow v_y & = \sqrt{\frac{mg}{k}}\tan(-t\sqrt{\frac{gk}{m}} + \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}})) \qquad \text{(5.2)} \end{aligned} \]

对于\(v_y\text{(5.1)}\),有:

\[\begin{aligned} v_y & = \frac{dy}{dt} \\ \frac{mg\tan(-\frac{t\sqrt{mgk}}{m}) + v_0\sin{\theta}\sqrt{mgk}}{\sqrt{mgk} - kv_0\sin{\theta}\tan(-\frac{t\sqrt{mgk}}{m})} & = \frac{dy}{dt} \end{aligned} \]

分离变量,两边同时积分得:

\[\begin{aligned} dy & = \frac{mg\tan(-\frac{t\sqrt{mgk}}{m}) + v_0\sin{\theta}\sqrt{mgk}}{\sqrt{mgk} - kv_0\sin{\theta}\tan(-\frac{t\sqrt{mgk}}{m})}dt \\ \int dy & = \int \frac{mg\tan(-\frac{t\sqrt{mgk}}{m}) + v_0\sin{\theta}\sqrt{mgk}}{\sqrt{mgk} - kv_0\sin{\theta}\tan(-\frac{t\sqrt{mgk}}{m})}dt \\ \int dy & = \int \frac{-mg\tan(\frac{t\sqrt{mgk}}{m}) + v_0\sin{\theta}\sqrt{mgk}}{\sqrt{mgk} + kv_0\sin{\theta}\tan(\frac{t\sqrt{mgk}}{m})}dt \\ \end{aligned} \]

对右边单独处理:

\[\begin{aligned} & 令u = \frac{t\sqrt{mgk}}{m}, 则t = \frac{mu}{\sqrt{mgk}}, dt = \frac{m}{\sqrt{mgk}}du \\ & \int \frac{-mg\tan u + v_0\sin{\theta}\sqrt{mgk}}{\sqrt{mgk} + kv_0\sin{\theta}\tan u}\frac{m}{\sqrt{mgk}}du \\ & = \frac{m}{\sqrt{mgk}}\int \frac{-mg\tan u + v_0\sin{\theta}\sqrt{mgk}}{\sqrt{mgk} + kv_0\sin{\theta}\tan u}du \\ 提取分数的整数部分 \\ & = \frac{m}{\sqrt{mgk}}\int (\frac{kv^2_0\sin^2{\theta}\sqrt{mgk} + mg\sqrt{mgk}}{kv_0\sin{\theta}(\sqrt{mgk} + kv_0\sin{\theta}\tan u)} - \frac{mg}{kv_0\sin{\theta}})du \\ & = \frac{m}{\sqrt{mgk}}(\int \frac{kv^2_0\sin^2{\theta}\sqrt{mgk} + mg\sqrt{mgk}}{kv_0\sin{\theta}(\sqrt{mgk} + kv_0\sin{\theta}\tan u)}du - \int \frac{mg}{kv_0\sin{\theta}}du) \\ & = \frac{m}{\sqrt{mgk}}(\frac{kv^2_0\sin^2{\theta}\sqrt{mgk} + mg\sqrt{mgk}}{kv_0\sin{\theta}}\int \frac{1}{\sqrt{mgk} + kv_0\sin{\theta}\tan u}du - \frac{mg}{kv_0\sin{\theta}}\int du) \\ \end{aligned} \]

\(\int \frac{1}{\sqrt{mgk} + kv_0\sin{\theta}\tan u}du\)单独处理:

\[\begin{aligned} & \int \frac{1}{\sqrt{mgk} + kv_0\sin{\theta}\tan u}du \\ & = \int \frac{1}{\sqrt{mgk} + kv_0\sin{\theta}\frac{\sin u}{\cos u}}du \\ & = \int \frac{\cos u}{\cos u\sqrt{mgk} + kv_0\sin{\theta}\sin u}du \\ 分组\cos u:\\ & \cos u = \frac{\sqrt{mgk}(kv_0\sin\theta\sin u + \sqrt{mgk}\cos u)}{mgk + k^2v^2_0\sin^2{\theta}} + \frac{kv_0\sin\theta(kv_0\sin\theta\cos u - \sqrt{mgk}\sin u)}{mgk + k^2v^2_0\sin^2{\theta}} \\ & = \int \frac{1}{\cos u\sqrt{mgk} + kv_0\sin{\theta}\sin u}(\frac{\sqrt{mgk}(kv_0\sin\theta\sin u + \sqrt{mgk}\cos u)}{mgk + k^2v^2_0\sin^2{\theta}} + \frac{kv_0\sin\theta(kv_0\sin\theta\cos u - \sqrt{mgk}\sin u)}{mgk + k^2v^2_0\sin^2{\theta}})du \\ & = \int (\frac{\sqrt{mgk}}{mgk + k^2v^2_0\sin^2{\theta}} + \frac{kv_0\sin\theta(kv_0\sin\theta\cos u - \sqrt{mgk}\sin u)}{(mgk + k^2v^2_0\sin^2{\theta})(\cos u\sqrt{mgk} + kv_0\sin{\theta}\sin u)})du \\ & = \int \frac{\sqrt{mgk}}{mgk + k^2v^2_0\sin^2{\theta}}du + \int \frac{kv_0\sin\theta(kv_0\sin\theta\cos u - \sqrt{mgk}\sin u)}{(mgk + k^2v^2_0\sin^2{\theta})(\cos u\sqrt{mgk} + kv_0\sin{\theta}\sin u)}du \\ & = \frac{\sqrt{mgk}}{mgk + k^2v^2_0\sin^2{\theta}}\int du + \frac{kv_0\sin\theta}{mgk + k^2v^2_0\sin^2{\theta}}\int \frac{kv_0\sin\theta\cos u - \sqrt{mgk}\sin u}{kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u}du \\ & 因为(kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u)' = kv_0\sin\theta\cos u - \sqrt{mgk}\sin u \\ & = \frac{\sqrt{mgk}}{mgk + k^2v^2_0\sin^2{\theta}}\int du + \frac{kv_0\sin\theta}{mgk + k^2v^2_0\sin^2{\theta}}\int \frac{1}{kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u}d(kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u) \\ & = \frac{\sqrt{mgk}}{mgk + k^2v^2_0\sin^2{\theta}}u + \frac{v_0\sin\theta\ln(kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u)}{mg + kv^2_0\sin^2{\theta}} \\ \end{aligned} \]

因此:

\[\begin{aligned} \int dy & = \frac{m}{\sqrt{mgk}}(\frac{kv^2_0\sin^2{\theta}\sqrt{mgk} + mg\sqrt{mgk}}{kv_0\sin{\theta}}\int \frac{1}{\sqrt{mgk} + kv_0\sin{\theta}\tan u}du - \frac{mg}{kv_0\sin{\theta}}\int du)\\ y & = \frac{m}{\sqrt{mgk}}[\frac{kv^2_0\sin^2{\theta}\sqrt{mgk} + mg\sqrt{mgk}}{kv_0\sin{\theta}}(\frac{\sqrt{mgk}}{mgk + k^2v^2_0\sin^2{\theta}}u + \frac{v_0\sin\theta\ln(kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u)}{mg + kv^2_0\sin^2{\theta}}) - \frac{mg}{kv_0\sin{\theta}}u + C_y] \\ y & = \frac{m}{\sqrt{mgk}}[\frac{\sqrt{mgk}(kv^2_0\sin^2{\theta} + mg)}{kv_0\sin{\theta}}(\frac{\sqrt{mgk}}{mgk + k^2v^2_0\sin^2{\theta}}u + \frac{v_0\sin\theta\ln(kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u)}{mg + kv^2_0\sin^2{\theta}}) - \frac{mg}{kv_0\sin{\theta}}u + C_y] \\ y & = \frac{m}{\sqrt{mgk}}(\frac{\sqrt{mgk}(kv^2_0\sin^2{\theta} + mg)}{kv_0\sin{\theta}}\frac{\sqrt{mgk}}{mgk + k^2v^2_0\sin^2{\theta}}u + \frac{\sqrt{mgk}(kv^2_0\sin^2{\theta} + mg)}{kv_0\sin{\theta}}\frac{v_0\sin\theta\ln(kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u)}{mg + kv^2_0\sin^2{\theta}} - \frac{mg}{kv_0\sin{\theta}}u + C_y) \\ y & = \frac{m}{\sqrt{mgk}}(\frac{mgk(kv^2_0\sin^2{\theta} + mg)}{kv_0\sin{\theta}(mgk + k^2v^2_0\sin^2{\theta})}u + \frac{\sqrt{mgk}\ln(kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u)}{k} - \frac{mg}{kv_0\sin{\theta}}u + C_y) \\ y & = \frac{m}{\sqrt{mgk}}(\frac{mg(k^2v^2_0\sin^2{\theta} + mgk)}{kv_0\sin{\theta}(mgk + k^2v^2_0\sin^2{\theta})}u + \frac{\sqrt{mgk}\ln(kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u)}{k} - \frac{mg}{kv_0\sin{\theta}}u + C_y) \\ y & = \frac{m}{\sqrt{mgk}}(\frac{mg}{kv_0\sin{\theta}}u + \frac{\sqrt{mgk}\ln(kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u)}{k} - \frac{mg}{kv_0\sin{\theta}}u + C_y) \\ y & = \frac{m}{\sqrt{mgk}}(\frac{\sqrt{mgk}\ln(kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u)}{k} + C_y) \\ y & = \frac{m}{\sqrt{mgk}}\frac{\sqrt{mgk}\ln(kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u)}{k} + \frac{m}{\sqrt{mgk}}C_y \\ y & = \frac{m\ln(kv_0\sin{\theta}\sin u + \sqrt{mgk}\cos u)}{k} + \frac{m}{\sqrt{mgk}}C_y \\ 反向替换,u = \frac{t\sqrt{mgk}}{m} \\ \Rightarrow y & = \frac{m\ln(kv_0\sin{\theta}\sin{\frac{t\sqrt{mgk}}{m}} + \sqrt{mgk}\cos{\frac{t\sqrt{mgk}}{m}})}{k} + \frac{m}{\sqrt{mgk}}C_y \end{aligned} \]

注意到,当\(\, t = 0,\, x = x_0, y = y_0,\, v_x = v_0\cos{\theta},\, v_y = v_0\sin{\theta}\)
那么可解得\(C_y\)

\[\begin{aligned} y_0 & = \frac{m\ln(kv_0\sin{\theta}\sin{\frac{0\cdot\sqrt{mgk}}{m}} + \sqrt{mgk}\cos{\frac{0\cdot\sqrt{mgk}}{m}})}{k} + \frac{m}{\sqrt{mgk}}C_y \\ y_0 & = \frac{m\ln(\sqrt{mgk})}{k} + \frac{m}{\sqrt{mgk}}C_y \\ \frac{m}{\sqrt{mgk}}C_y & = y_0 -\frac{m\ln(\sqrt{mgk})}{k} \\ C_y & = \frac{\sqrt{mgk}}{m}y_0 -\frac{\sqrt{mgk}\ln(\sqrt{mgk})}{k} \\ \end{aligned} \]

可得\(y\)

\[\begin{aligned} y & = \frac{m\ln(kv_0\sin{\theta}\sin{\frac{t\sqrt{mgk}}{m}} + \sqrt{mgk}\cos{\frac{t\sqrt{mgk}}{m}})}{k} - \frac{m\ln(\sqrt{mgk})}{k} + y_0 \\ y & = \frac{m\ln(kv_0\sin{\theta}\sin{\frac{t\sqrt{mgk}}{m}} + \sqrt{mgk}\cos{\frac{t\sqrt{mgk}}{m}}) - m\ln(\sqrt{mgk})}{k} + y_0 \\ y & = \frac{m\ln(\frac{kv_0\sin{\theta}\sin{\frac{t\sqrt{mgk}}{m}} + \sqrt{mgk}\cos{\frac{t\sqrt{mgk}}{m}}}{\sqrt{mgk}})}{k} + y_0 \\ y & = \frac{m}{k}\ln(\frac{kv_0\sin{\theta}\sin{\frac{t\sqrt{mgk}}{m}} + \sqrt{mgk}\cos{\frac{t\sqrt{mgk}}{m}}}{\sqrt{mgk}}) + y_0 \\ \Rightarrow y & = \frac{m}{k}\ln(\frac{kv_0\sin{\theta}\sin{\frac{t\sqrt{mgk}}{m}} }{\sqrt{mgk}} + \cos{\frac{t\sqrt{mgk}}{m}}) + y_0 \qquad \text{(6.1)} \end{aligned} \]

对于\(v_y\text{(5.2)}\),有:

\[\begin{aligned} v_y & = \frac{dy}{dt} \\ \sqrt{\frac{mg}{k}}\tan(-t\sqrt{\frac{gk}{m}} + \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}})) & = \frac{dy}{dt} \end{aligned} \]

分离变量,两边同时积分得:

\[\begin{aligned} dy & = \sqrt{\frac{mg}{k}}\tan(-t\sqrt{\frac{gk}{m}} + \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))dt \\ \int dy & = \int \sqrt{\frac{mg}{k}}\tan(-t\sqrt{\frac{gk}{m}} + \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))dt \\ \int dy & = -\sqrt{\frac{mg}{k}}\int \tan(t\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))dt \\ 令 u = t\sqrt{\frac{gk}{m}} - & \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}), 则t = \frac{\sqrt{m}u + \sqrt{m}\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}})}{\sqrt{gk}}, dt = \frac{\sqrt{m}}{\sqrt{gk}}du \\ \int dy & = -\sqrt{\frac{mg}{k}}\int \tan(u)\frac{\sqrt{m}}{\sqrt{gk}}du \\ \int dy & = -\sqrt{\frac{m^2}{k^2}}\int \tan(u)du \\ \int dy & = -\frac{m}{k}\int \frac{\sin u}{\cos u}du \\ \int dy & = -\frac{m}{k}\int -\frac{1}{\cos u}d({\cos u}) \\ y + C_y & = \frac{m}{k}\ln|\cos u| \\ 反向替换,u & = t\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}) \\ \Rightarrow y + C_y & = \frac{m}{k}\ln|\cos(t\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))| \end{aligned} \]

注意到,当\(\, t = 0,\, x = x_0, y = y_0,\, v_x = v_0\cos{\theta},\, v_y = v_0\sin{\theta}\)
那么可解得\(C_y\)

\[\begin{aligned} + y_0C_y & = \frac{m}{k}\ln|\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))| \\ C_y & = - + y_0\frac{m}{k}\ln|\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))| \end{aligned} \]

可得\(y\)

\[\begin{aligned} y + \frac{m}{k}\ln|\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))| & = \frac{m}{k}\ln|\cos(t\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))| + y_0 \\ y & = \frac{m}{k}\ln|\cos(t\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))| - \frac{m}{k}\ln|\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))| + y_0 \\ y & = \frac{m}{k}(\ln|\cos(t\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))| -\ln|\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))|) + y_0 \\ \Rightarrow y & = \frac{m}{k}\ln|\frac{\cos(t\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \qquad \text{(6.2)}\\ \end{aligned} \]

轨迹方程

\[\begin{aligned} x & = \frac{m}{k}\ln(\frac{m + kv_0\cos{\theta}t}{m}) + x_0\qquad \text{(4)} \\ y & = \frac{m}{k}\ln(\frac{kv_0\sin{\theta}\sin{\frac{t\sqrt{mgk}}{m}} }{\sqrt{mgk}} + \cos{\frac{t\sqrt{mgk}}{m}}) + y_0 \qquad \text{(6.1)} \\ y & = \frac{m}{k}\ln|\frac{\cos(t\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \qquad \text{(6.2)} \end{aligned} \]

\(\text{(6.2)}\text{(7)}\)可得:

\[\begin{aligned} x & = \frac{m}{k}\ln(\frac{m + kv_0\cos{\theta}t}{m}) + x_0 \\ \frac{k}{m}(x - x_0) & = \ln(\frac{m + kv_0\cos{\theta}t}{m}) \\ e^{\frac{k}{m}(x - x_0)} & = \frac{m + kv_0\cos{\theta}t}{m} \\ me^{\frac{k}{m}(x - x_0)} & = m + kv_0\cos{\theta}t \\ me^{\frac{k}{m}(x - x_0)} - m & = kv_0\cos{\theta}t \\ t & = \frac{me^{\frac{k}{m}(x - x_0)} - m}{kv_0\cos{\theta}} \qquad \text{(7)}\\ \end{aligned} \]

联立\(\text{(6.1)}\text{(7)}\)\(\text{(6.2)}\text{(7)}\)式,消去\(t\),可得轨迹方程:

\[\begin{aligned} y & = \frac{m}{k}\ln(\frac{kv_0\sin{\theta}\sin{\frac{\frac{me^{\frac{k}{m}(x - x_0)} - m}{kv_0\cos{\theta}}\sqrt{mgk}}{m}} }{\sqrt{mgk}} + \cos{\frac{\frac{me^{\frac{k}{m}(x - x_0)} - m}{kv_0\cos{\theta}}\sqrt{mgk}}{m}}) + y_0 \qquad \text{(8.1)} \\ y & = \frac{m}{k}\ln|\frac{\cos(\frac{me^{\frac{k}{m}(x - x_0)} - m}{kv_0\cos{\theta}}\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \qquad \text{(8.2)} \end{aligned} \]

落回初始高度所需时间\(t\)

\(v_y = 0\),抛射体上升到最大高度\(y_{max}\),由\(\text{(5.2)}\)可得:

\[\begin{aligned} 0 & = \sqrt{\frac{mg}{k}}\tan(-t\sqrt{\frac{gk}{m}} + \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}})) \\ 0 & = \tan(-t\sqrt{\frac{gk}{m}} + \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}})) \\ t\sqrt{\frac{gk}{m}} & = \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}) \\ t & = \sqrt{\frac{m}{gk}}\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}) \\ \end{aligned} \]

即抛射体上升到最大高度所需时间\(t_m = \sqrt{\frac{m}{gk}}\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}})\)
\(\text{(6.2)}\)可得:

\[\begin{aligned} y_{max} & = \frac{m}{k}\ln|\frac{\cos(t_m\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \\ y_{max} & = \frac{m}{k}\ln|\frac{\cos(\sqrt{\frac{m}{gk}}\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}})\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \\ y_{max} & = \frac{m}{k}\ln|\frac{\cos(\sqrt{\frac{m}{gk}}\sqrt{\frac{gk}{m}}\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}) - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \\ y_{max} & = \frac{m}{k}\ln|\frac{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}) - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \\ y_{max} & = \frac{m}{k}\ln|\frac{\cos(0)}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \\ y_{max} & = \frac{m}{k}\ln|\frac{1}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \\ & 因为\arctan x \in (-\pi/2,\pi/2) \\ \Rightarrow y_{max} & = \frac{m}{k}\ln\frac{1}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))} + y_0 \\ \end{aligned} \]

最大射程及其对应\(\theta\)


运用至英雄吊射或飞镖视觉

  1. 视觉识别装甲板或其他方法定位装甲板,得到装甲板坐标\((x_0, y_0)\)
  2. 云台枪口移至装甲板正中心
  3. 以此时云台pitch轴为y轴,枪口朝向为x轴建立坐标系
  4. 将装甲板坐标转换至该坐标系
  5. 已知初始射速\(v_0\),目标装甲板坐标\((x_0, y_0)\)
    对于\(\text{(4)}\)式,展开\(e^{-\frac{k}{m}t}\),并取展开式的二次项:

    \[e^{-\frac{k}{m}t} \approx 1 - \frac{k}{m}t + \frac{1}{2}(\frac{k}{m})^2t^2 \\ x_0 = \frac{mv_0\cos{\theta}}{k}(1 - e^{- \frac{k}{m}t}) \\ \Rightarrow (\frac{k}{m}t - \frac{1}{2}(\frac{k}{m})^2t^2) = \frac{kx_0}{mv_0\cos{\theta}} \qquad \text{(i)}\\ \frac{1}{2}(\frac{k}{m})^2t^2 - \frac{k}{m}t + \frac{kx_0}{mv_0\cos{\theta}} = 0 \\ \frac{k^2}{2m^2}t^2 - \frac{k}{m}t + \frac{kx_0}{mv_0\cos{\theta}} = 0 \\ \frac{k}{2m}t^2 - t + \frac{x_0}{v_0\cos{\theta}} = 0 \\ t^2 - \frac{2m}{k}t + \frac{2mx_0}{kv_0\cos{\theta}} = 0 \\ \Rightarrow t = \frac{-(- \frac{2m}{k}) \pm \sqrt{(- \frac{2m}{k})^2 - 4\frac{2mx_0}{kv_0\cos{\theta}}}}{2} \\ t = \frac{\frac{2m}{k} \pm \sqrt{4(\frac{m}{k})^2 - 4\frac{2mx_0}{kv_0\cos{\theta}}}}{2} \\ t = \frac{\frac{2m}{k} \pm 2\sqrt{(\frac{m}{k})^2 - \frac{2mx_0}{kv_0\cos{\theta}}}}{2} \\ t = \frac{m}{k} \pm \sqrt{\frac{m}{k}(\frac{m}{k} - \frac{2x_0}{v_0\cos{\theta}})} \qquad \text{(ii)}\\ \]

    \(\text{(i)}\text{(ii)}\)式,一并带入\(\text{(6)}\)

    \[y_0 = \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta})(\frac{k}{m}t - \frac{1}{2}(\frac{k}{m})^2t^2) - \frac{mg}{k}t \\ + y_0\frac{mg}{k}t = \frac{m}{k}(\frac{mg}{k} + v_0\sin{\theta})(\frac{k}{m}t - \frac{1}{2}(\frac{k}{m})^2t^2)\\ \frac{ + y_0\frac{mg}{k}t}{\frac{m}{k}(\frac{k}{m}t - \frac{1}{2}(\frac{k}{m})^2t^2)} = \frac{mg}{k} + v_0\sin{\theta}\\ \sin{\theta}= \frac{\frac{ + y_0\frac{mg}{k}t}{\frac{m}{k}(\frac{k}{m}t - \frac{1}{2}(\frac{k}{m})^2t^2)} - \frac{mg}{k}}{v_0} \\ \sin{\theta}= \frac{\frac{ + y_0\frac{mg}{k}t}{\frac{m}{k}\frac{kx_0}{mv_0\cos{\theta}}} - \frac{mg}{k}}{v_0} \\ \sin{\theta}= \frac{ + y_0\frac{mg}{k}t}{v_0 \cdot \frac{m}{k}\frac{kx_0}{mv_0\cos{\theta}}} - \frac{mg}{kv_0} \\ \sin{\theta}= \frac{ + y_0\frac{mg}{k}t}{v_0 \cdot \frac{m}{k}\frac{kx_0}{mv_0\cos{\theta}}} - \frac{mg}{kv_0} \\ \sin{\theta}= \frac{ + y_0\frac{mg}{k}t}{\frac{x_0}{\cos{\theta}}} - \frac{mg}{kv_0}\\ \Rightarrow \sin{\theta}= \frac{ + y_0\frac{mg}{k}(\frac{m}{k} \pm \sqrt{\frac{m}{k}(\frac{m}{k} - \frac{2x_0}{v_0\cos{\theta}})})}{\frac{x_0}{\cos{\theta}}} - \frac{mg}{kv_0}\\ \]

    最终得到只关于\(\theta\)的方程,用数值求解的方式,使用龙格-库塔(Runge-Kutta)法求得比较精确的解
    这个解,即为解得pitch轴所需转动的角度
    同时需要寻找一个角度,在弹道稳定的情况下,在初射速存在波动的情况下也能命中目标TODO

空气阻力与速度的二次方成正比

运动至最高点过程

由牛顿第二定律:

\[\begin{aligned} ma_x & = - kv^2_x \\ ma_y & = - (mg + kv^2_y) \end{aligned} \]

也即:

\[\begin{aligned} m\frac{dv_x}{dt} & = - kv^2_x & \text{(1)}\\ m\frac{dv_y}{dt} & = -mg - kv^2_y & \text{(2)} \\ \end{aligned} \\ \]

速度与位移方程

\(\text{(1)}\text{(2)}\)式分离变量,且两边同时积分,
且当 \(t = 0,\, v_x = v_0\cos{\theta},\, v_y = v_0\sin{\theta}\)
可得:

\[ v_x = \frac{mv_0\cos{\theta}}{m + ktv_0\cos{\theta}} \tag{3} \]

\[ v_y = \frac{mg\tan(-\frac{t\sqrt{mgk}}{m}) + v_0\sin{\theta}\sqrt{mgk}}{\sqrt{mgk} - kv_0\sin{\theta}\tan(-\frac{t\sqrt{mgk}}{m})} \tag{4.1} \]

\[ v_y = \sqrt{\frac{mg}{k}}\tan(-t\sqrt{\frac{gk}{m}} + \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}})) \tag{4.2} \]

对于\(v_x,v_y\),有:

\[\begin{aligned} v_x & = \frac{dx}{dt} \\ v_y & = \frac{dy}{dt} \end{aligned} \]

\(\text{(3)}\text{(4)}\)式分离变量,且两边同时积分,
且当 \(t = 0,\, x = x_0,\, y = y_0\)
可得:

\[ x = \frac{m}{k}\ln(1 + \frac{ktv_0\cos{\theta}}{m}) + x_0 \tag{5} \]

\[ y = \frac{m}{k}\ln(\frac{kv_0\sin{\theta}\sin{\frac{t\sqrt{mgk}}{m}} }{\sqrt{mgk}} + \cos{\frac{t\sqrt{mgk}}{m}}) + y_0 \tag{6.1} \]

\[ y = \frac{m}{k}\ln|\frac{\cos(t\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \tag{6.2} \]

轨迹方程

\[\begin{aligned} x & = \frac{m}{k}\ln(\frac{m + ktv_0\cos{\theta}}{m}) + x_0\qquad \text{(5)} \\ y & = \frac{m}{k}\ln(\frac{kv_0\sin{\theta}\sin{\frac{t\sqrt{mgk}}{m}} }{\sqrt{mgk}} + \cos{\frac{t\sqrt{mgk}}{m}}) + y_0 \qquad \text{(6.1)} \\ y & = \frac{m}{k}\ln|\frac{\cos(t\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \qquad \text{(6.2)} \end{aligned} \]

\(\text{(5)}\)可得:

\[\begin{aligned} x & = \frac{m}{k}\ln(\frac{m + ktv_0\cos{\theta}}{m}) + x_0 \\ \frac{k}{m}(x - x_0) & = \ln(\frac{m + ktv_0\cos{\theta}}{m}) \\ e^{\frac{k}{m}(x - x_0)} & = \frac{m + ktv_0\cos{\theta}}{m} \\ me^{\frac{k}{m}(x - x_0)} & = m + ktv_0\cos{\theta} \\ me^{\frac{k}{m}(x - x_0)} - m & = ktv_0\cos{\theta} \\ t & = \frac{me^{\frac{k}{m}(x - x_0)} - m}{kv_0\cos{\theta}} \qquad \text{(7)}\\ e^{\frac{k}{m}(x - x_0)} & = 1 + \frac{ktv_0\cos{\theta}}{m} \\ e^{\frac{k}{m}(x - x_0)} - 1 & = \frac{ktv_0\cos{\theta}}{m} \\ m(e^{\frac{k}{m}(x - x_0)} - 1) & = ktv_0\cos{\theta} \\ t & = \frac{m}{kv_0\cos{\theta}}(e^{\frac{k}{m}(x - x_0)} - 1) \\ \end{aligned} \]

联立\(\text{(6.1)}\text{(7)}\)\(\text{(6.2)}\text{(7)}\)式,消去\(t\),可得轨迹方程:

\[\begin{aligned} y & = \frac{m}{k}\ln(\frac{kv_0\sin{\theta}\sin{\frac{\frac{me^{\frac{k}{m}(x - x_0)} - m}{kv_0\cos{\theta}}\sqrt{mgk}}{m}} }{\sqrt{mgk}} + \cos{\frac{\frac{me^{\frac{k}{m}(x - x_0)} - m}{kv_0\cos{\theta}}\sqrt{mgk}}{m}}) + y_0 \qquad \text{(8.1)} \\ y & = \frac{m}{k}\ln|\frac{\cos(\frac{me^{\frac{k}{m}(x - x_0)} - m}{kv_0\cos{\theta}}\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \qquad \text{(8.2)} \end{aligned} \]

\(v_y = 0\),抛射体上升到最大高度\(y_{max}\),由\(\text{(4.2)}\)可得:

\[ t = \sqrt{\frac{m}{gk}}\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}) \]

即抛射体上升到最大高度所需时间

\[ t_m = \sqrt{\frac{m}{gk}}\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}) \tag{9} \]

\(\text{(6.2)}\)可得:

\[\begin{aligned} y_{max} & = \frac{m}{k}\ln|\frac{\cos(t_m\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \\ y_{max} & = \frac{m}{k}\ln|\frac{\cos(\sqrt{\frac{m}{gk}}\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}})\sqrt{\frac{gk}{m}} - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \\ y_{max} & = \frac{m}{k}\ln|\frac{\cos(\sqrt{\frac{m}{gk}}\sqrt{\frac{gk}{m}}\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}) - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \\ y_{max} & = \frac{m}{k}\ln|\frac{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}) - \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \\ y_{max} & = \frac{m}{k}\ln|\frac{\cos(0)}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \\ y_{max} & = \frac{m}{k}\ln|\frac{1}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))}| + y_0 \\ & 因为\arctan x \in (-\pi/2,\pi/2) \\ y_{max} & = \frac{m}{k}\ln\frac{1}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))} + y_0 \\ \end{aligned} \]

\(c = \arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}})\),那么\(\tan c = v_0\sin{\theta}\sqrt{\frac{k}{mg}}\)

\[ 1 + \tan^2 c = 1 + (v_0\sin{\theta}\sqrt{\frac{k}{mg}})^2 = \frac{1}{\cos^2c} \\ \Rightarrow \frac{1}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))} = \sqrt{1 + (v_0\sin{\theta}\sqrt{\frac{k}{mg}})^2} \]

\[\begin{aligned} y_{max} & = \frac{m}{k}\ln\frac{1}{\cos(\arctan(v_0\sin{\theta}\sqrt{\frac{k}{mg}}))} + y_0 \\ \Rightarrow y_{max} & = \frac{m}{k}\ln\sqrt{1 + (v_0\sin{\theta}\sqrt{\frac{k}{mg}})^2} + y_0 \end{aligned} \]

由最高点下降过程

\(v_{y_2} < 0\)

由牛顿第二定律:

\[\begin{aligned} ma_{x_2} & = - kv^2_{x_2} \\ ma_{y_2} & = - mg + kv^2_{y_2} \end{aligned} \]

也即:

\[\begin{aligned} m\frac{dv_{x_2}}{dt} & = - kv^2_{x_2} & \text{(1)}\\ m\frac{dv_{y_2}}{dt} & = -mg + kv^2_{y_2} & \text{(2)} \\ \end{aligned} \\ \]

在最高点时,由\((3)(9)\)式,可得抛射体速度:

\[ v_{0x_2} = \cfrac{mv_0\cos{\theta}}{m + k\sqrt{\cfrac{m}{gk}}\arctan(v_0\sin{\theta}\sqrt{\cfrac{k}{mg}})v_0\cos{\theta}} \\ v_{0y_2} = 0 \]

速度与位移方程

\(\text{(1)}\text{(2)}\)式分离变量,且两边同时积分,
且当 \(t = t_m,\, v_{x_2} = v_{0x_2},\, v_{y_2} = 0\)
可得:

\[ v_{x_2} = \frac{mv_0\cos{\theta}}{m + ktv_0\cos{\theta}} \tag{3} \]

\[ \frac{dv_{y_2}}{dt} = -g + \frac{k}{m}v^2_{y_2} \\ \frac{dv_{y_2}}{-g + \frac{k}{m}v^2_{y_2} } = dt \\ \frac{1}{2}\sqrt{\frac{m}{gk}}\ln\frac{|kv_{y_2} - \sqrt{mgk}|}{kv_{y_2} + \sqrt{mgk}} + C_{v_{y_2}} = t \\ C_{v_{y_2}} = t_m \\ \frac{1}{2}\sqrt{\frac{m}{gk}}\ln\frac{|kv_{y_2} - \sqrt{mgk}|}{kv_{y_2} + \sqrt{mgk}} + t_m = t \\ \frac{1}{2}\sqrt{\frac{m}{gk}}\ln\frac{|kv_{y_2} - \sqrt{mgk}|}{kv_{y_2} + \sqrt{mgk}} = t - t_m\\ \ln\frac{|kv_{y_2} - \sqrt{mgk}|}{kv_{y_2} + \sqrt{mgk}} = 2\sqrt{\frac{gk}{m}}(t - t_m)\\ \frac{|kv_{y_2} - \sqrt{mgk}|}{kv_{y_2} + \sqrt{mgk}} = e^{2\sqrt{\frac{gk}{m}}(t - t_m)}\\ |kv_{y_2} - \sqrt{mgk}| = e^{2\sqrt{\frac{gk}{m}}(t - t_m)}(kv_{y_2} + \sqrt{mgk})\\ -kv_{y_2} + \sqrt{mgk} = e^{2\sqrt{\frac{gk}{m}}(t - t_m)}kv_{y_2} + e^{2\sqrt{\frac{gk}{m}}(t - t_m)}\sqrt{mgk}\\ -kv_{y_2} - e^{2\sqrt{\frac{gk}{m}}(t - t_m)}kv_{y_2} = e^{2\sqrt{\frac{gk}{m}}(t - t_m)}\sqrt{mgk} - \sqrt{mgk}\\ -kv_{y_2} = \frac{\sqrt{mgk}(e^{2\sqrt{\frac{gk}{m}}(t - t_m)} - 1)}{1 + e^{2\sqrt{\frac{gk}{m}}(t - t_m)}}\\ v_{y_2} = \frac{\sqrt{mgk}(1 - e^{2\sqrt{\frac{gk}{m}}(t - t_m)})}{k(1 + e^{2\sqrt{\frac{gk}{m}}(t - t_m)})}\\ v_y = -\sqrt{\frac{mg}{k}}\th{(\sqrt{\frac{k}{mg}}g(t-t_m))} \]

对于\(v_x,v_y\),有:

\[\begin{aligned} v_x & = \frac{dx}{dt} \\ v_y & = \frac{dy}{dt} \end{aligned} \]

\(\text{(3)}\text{(4)}\)式分离变量,且两边同时积分,
且当 \(t = t_m,\, x = x_m,\, y = y_m\)
可得:

\[ x = \frac{m}{k}\ln(1 + \frac{ktv_0\cos{\theta}}{m}) + x_0 \tag{5} \]

\[ v_y = -\sqrt{\frac{mg}{k}}\tanh{(\sqrt{\frac{k}{mg}}g(t-t_m))} \\ \frac{dy}{dt} = -\sqrt{\frac{mg}{k}}\tanh{(\sqrt{\frac{k}{mg}}g(t-t_m))} \\ dy = -\sqrt{\frac{mg}{k}}\tanh{(\sqrt{\frac{k}{mg}}g(t-t_m))}dt \\ \int dy = \int -\sqrt{\frac{mg}{k}}\tanh{(\sqrt{\frac{k}{mg}}g(t-t_m))}dt \\ \int dy = -\sqrt{\frac{mg}{k}} \int \tanh{(\sqrt{\frac{k}{mg}}g(t-t_m))}dt \\ y + C_y = -\frac{m}{k}\ln\coth(\sqrt{\frac{k}{mg}}g(t-t_m))\\ y_m + C_y = -\frac{m}{k}\ln\coth(\sqrt{\frac{k}{mg}}g(t_m-t_m)) \\ C_y = -y_m \\ y = y_m -\frac{m}{k}\ln\coth(\sqrt{\frac{k}{mg}}g(t-t_m))\\ \]

消去t

\[ x = \frac{m}{k}\ln(1 + \frac{ktv_0\cos{\theta}}{m}) + x_0 \\ y = y_m -\frac{m}{k}\ln\coth(\sqrt{\frac{k}{mg}}g(t-t_m))\\ t = \frac{m}{kv_0\cos{\theta}}(e^{\frac{k}{m}(x - x_0)} - 1) \\ y = y_m -\frac{m}{k}\ln\coth(\sqrt{\frac{k}{mg}}g(\frac{m}{kv_0\cos{\theta}}(e^{\frac{k}{m}(x - x_0)} - 1)-t_m))\\ \]