8.5.2 直线与平面平行

发布时间 2023-05-05 23:04:36作者: 贵哥讲高中数学

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高一数学同步精品讲义与分层练习(人教A版2019)]
(https://www.zxxk.com/docpack/2921718.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第二册同步巩固,难度2颗星!

基础知识

定义

直线与平面无交点.

判定定理

如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.

(1) 若平面\(\alpha\)外一直线\(a\)与该平面一直线\(b\)平行,则直线\(a\)与平面\(\alpha\)没有公共点,即直线\(a\)与平面\(\alpha\)平行;
image.png
(2) 符号表述

\[\left.\begin{array}{c} a \| b \\ a \not \subset \alpha \\ b \subset \alpha \end{array}\right\} \Rightarrow a \| \alpha \text { (线线平行 } \Rightarrow \text { 线面平行) }\]

(3) 若\(a\not \subset \alpha\),要证明\(a||\alpha\),则在平面\(\alpha\)内找一条直线与直线\(a\)平行.把直面平行问题转化为线线平行.
 

性质定理

一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.

(1) 符号表述

\[\left.\begin{array}{c} a \| \alpha \\ a \subset \beta \\ \alpha \cap \beta=b \end{array}\right\} \Rightarrow a \| b \text { (线面平行 } \Rightarrow \text { 线线平行) }\]

image.png
(2) 证明:如上图,\(\because \alpha\cap \beta =b\)\(\therefore b\subset \alpha\),又\(a||\alpha\)\(\therefore a\)\(b\)无公共点,
\(a\subset \beta\)\(b\subset \beta\)\(\therefore a||b\).
(3) 该性质定理可以由线面平行得到线线平行,即线线平行问题也可以转化为线面平行.
 

证明线面平行的方法

① 定义法(反证)\(l\cap \alpha=∅ ⇒l|| \alpha\)(用于判断)
② 判定定理:\(\left.\begin{array}{c} a \| b \\ a \not \subset \alpha \\ b \subset \alpha \end{array}\right\} \Rightarrow a \| \alpha(\text { 线线平行 } \Rightarrow \text { 线面平行 })\)
\(\left.\begin{array}{c} \alpha \| \beta \\ a \subset \alpha \end{array}\right\} \Rightarrow a \| \beta \text { (面面平行 } \Rightarrow \text { 线面平行) }\)
\(\left.\begin{array}{l} b \perp a \\ b \perp \alpha \\ a \not \subset \alpha \end{array}\right\} \Rightarrow a \| \alpha\)
 

基本方法

【题型1】 线面平行的判定

【典题1】如图所示,在棱长为\(a\)的正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\)\(F\)\(P\)\(Q\)分别是\(BC\)\(C_1 D_1\)\(AD_1\)\(BD\)的中点.
  (1) 求证:\(PQ||\)平面\(DCC_1 D_1\)
  (2) 求\(PQ\)的长;
  (3) 求证:\(EF||\)平面\(BB_1 D_1 D\).
image.png
解析 (1) 如图所示,连接\(AC\)\(CD_1\)
image.png
\(\because P\)\(Q\)分别为\(AD_1\)\(AC\)的中点,\(\therefore PQ||CD_1\)
\(\because CD_1\subset\)平面\(DCC_1 D_1\)\(PQ\not \subset\)平面\(DCC_1 D_1\)
\(\therefore PQ||\)平面\(DCC_1 D_1\).
(2) 由题意,可得:\(PQ=\dfrac{1}{2} D_1 C=\dfrac{\sqrt{2}}{2} a\)
(3) 连接\(QE\)\(D_1 Q\)
image.png
\(\because E\)\(Q\)分别是\(BC\)\(BD\)的中点,\(\therefore QE||CD\)\(QE=\dfrac{1}{2} CD\)
\(D_1 F||CD\)\(QE=\dfrac{1}{2} CD\)\(\therefore D_1 F=QE\)\(D_1 F||QE\)
\(\therefore\)四边形\(D_1 FEQ\)是平行四边形,
\(\therefore D_1 Q||EF\)
\(\because D_1 Q\subset\)平面\(D_1 FEQ\)\(EF\not \subset\)平面\(D_1 FEQ\)
\(\therefore EF||\)平面\(BB_1 D_1 D\).
点拨
① 在立体几何中,遇到中点我们往往会想到中位线;
② 证明线面平行的过程中,经常利用三角形的中位线(如第一问)和构造平行四边形的方法(如第三问);
③ 证明线面平行可转化为证明线线平行或面面平行,本题第三问还有多种方法.
 

【巩固练习】

1.如图,在下列四个正方体中,\(A\)\(B\)为正方体的两个顶点,\(M\)\(N\)\(Q\)为所在棱的中点,则在这四个正方体中,直线\(AB\)与平面\(MNQ\)不平行的是(  )
 A.image.png \(\qquad\) B.image.png \(\qquad\) C.image.png \(\qquad\) D.image.png
 

2.如图所示,四棱锥\(P-ABCD\)的底面是一直角梯形,\(AB∥CD\)\(CD=2AB\)\(E\)\(PC\)的中点,则\(BE\)与平面\(PAD\)的位置关系为\(\underline{\quad \quad}\)
image.png
 

3.如图所示,正四棱锥\(P—ABCD\)的各棱长均为\(13\)\(M\)\(N\)分别为\(PA\)\(BD\)上的点,且\(PM:MA=BN:ND=5:8\).
  (1)求证:直线\(MN∥\)平面\(PBC\)\(\qquad\) (2)求线段\(MN\)的长.
image.png
 

参考答案

  1. 答案 \(A\)
    解析 对于选项\(B\),由于\(AB∥MQ\),结合线面平行判定定理可知\(B\)不满足题意;
    对于选项\(C\),由于\(AB∥MQ\),结合线面平行判定定理可知\(C\)不满足题意;
    对于选项\(D\),由于\(AB∥NQ\),结合线面平行判定定理可知\(D\)不满足题意;
    所以选项\(A\)满足题意,
    故选:\(A\)

  2. 答案 平行
    解析\(PD\)的中点\(F\),连接\(EF\)\(AF\),由\(E\)\(F\)为中点,
    所以\(EF∥CD\)\(EF=\dfrac{1}{2} CD\),又\(AB∥CD\)\(CD=2AB\)
    \(EF∥AB\),且\(EF=AB\),从而四边形\(ABEF\)为平行四边形,
    所以\(BE∥AF\)\(BE\not \subset\) 平面\(PAD\)\(AF\subset\)平面\(PAD\)
    根据线面平行的判定定理可得\(BE∥\)平面\(PAD\)
    故答案为:平行
    image.png

  3. 答案 (1)略 (2) \(7\)
    解析 (1)证明 连接\(AN\)并延长交\(BC\)\(Q\),连接\(PQ\),如图所示.
    image.png
    \(\because AD∥BQ\)\(\therefore △QNB∽△AND\)
    \(\therefore \dfrac{N Q}{A N}=\dfrac{B N}{N D}=\dfrac{B Q}{A D}=\dfrac{5}{8}\)
    \(\because \dfrac{P M}{M A}=\dfrac{B N}{N D}=\dfrac{5}{8}\)
    \(\therefore \dfrac{M P}{A M}=\dfrac{N Q}{A N}=\dfrac{5}{8}\)\(\therefore MN||PQ\)
    \(\because PQ\subset\) 平面\(PBC\)\(MN\not \subset\)平面\(PBC\)
    \(\therefore MN∥\)平面\(PBC\).
    (2)解 在等边\(△PBC\)中, \(\angle P B C=60^{\circ}\)
    \(△PBQ\)中由余弦定理知知 \(P Q^2=P B^2+B Q^2-2 P B \cdot B Q \cos \angle P B Q\)\(=13^2+\left(\dfrac{65}{8}\right)^2-2 \times 13 \times \dfrac{65}{8} \times \dfrac{1}{2}=\dfrac{8281}{64}\)
    \(\therefore P Q=\dfrac{91}{8}\)
    \(\because MN∥PQ\)\(MN:PQ=8:13\)
    \(\therefore M N=\dfrac{91}{8} \times \dfrac{8}{13}=7\).
     

【题型2】 线面平行的性质

【典题1】 如图,\(P\)\(△ABC\)所在平面外一点,\(E\)\(F\)\(G\)分别在\(AB\)\(BC\)\(PC\)上,且\(PG=2GC\)\(AC∥\)平面\(EFG\)\(PB∥\)平面\(EFG\).则 \(\dfrac{A E}{E B}=\) (  )
image.png
 A.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) B.\(1\) \(\qquad \qquad \qquad \qquad\)C. \(\dfrac{3}{2}\) \(\qquad \qquad \qquad \qquad\) D.\(2\)
解析 \(\because AC∥\)平面\(EFG\),平面\(EFG\cap\)平面\(ABC=EF\)\(PB∥\)平面\(EFG\),平面\(EFG\cap\) 平面\(PBC=FG\)
\(\therefore AC∥EF\)\(PB∥FG\)
\(\therefore PG:GC=BF:FC=EB:AE\)
\(\because PG=2GC\)\(\therefore BF=2FC\)
\(\therefore EB=2AE\)
\(\therefore \dfrac{A E}{E B}=\dfrac{1}{2}\)
故选:\(A\)
 

【典题2】 如图,在空间四边形\(ABCD\)中,\(E\)\(F\)\(G\)\(H\)分别是\(AB\)\(BC\)\(CD\)\(DA\)上的点,\(EH∥FG\).求证:\(EH∥BD\)
image.png
证明 因为\(EH∥FG\)\(FG\subset\) 平面\(BCD\)\(EH\not \subset\)平面\(BCD\)
所以\(EH∥\)平面\(BCD\)
因为\(EH\subset\)平面\(ABD\),平面\(ABD\cap\)平面\(BCD=BD\)
所以\(EH∥BD\)
 

【巩固练习】

1.若直线\(a∥\)平面\(\alpha\),直线\(b∥\)平面\(\alpha\),则\(a\)\(b\)的位置关系是(  )
 A.相交 \(\qquad \qquad \qquad \qquad\) B.平行 \(\qquad \qquad \qquad \qquad\) C.异面 \(\qquad \qquad \qquad \qquad\) D.相交、平行 或异面
 

2.在空间四边形\(ABCD\)中,\(E\)\(F\)\(G\)\(H\)分别是\(AB\)\(BC\)\(CD\)\(DA\)上的点,当\(BD∥\)平面\(EFGH\)时,下面结论正确的是(  )
 A.\(E\)\(F\)\(G\)\(H\)一定是各边的中点\(\qquad \qquad\) B.\(G\)\(H\)一定是\(CD\)\(DA\)的中点
 C.\(AE:EB=AH:HD\) \(\qquad \qquad \qquad\) D.四边形\(EFGH\)是平行四边形
 

3.如图在三棱锥\(P﹣ABC\)中,\(D\)\(PB\)中点,\(E\)\(BC\)中点,点\(F\)\(AC\)上,若直线\(AD∥\)平面\(PEF\),则\(\dfrac{AF}{FC}\)的值为(  )
image.png
 A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\)C.\(2\) \(\qquad \qquad \qquad \qquad\)D. \(\dfrac{2}{3}\)
 

4.如图,\(P\)为平行四边形\(ABCD\)所在平面外一点,\(E\)\(AD\)上一点,且 \(\dfrac{A E}{E D}=\dfrac{1}{3}\)\(F\)\(PC\)上一点,当\(PA∥\)平面\(EBF\)时, \(\dfrac{P F}{F C}=\)(  )
image.png
 A.\(\dfrac{2}{3}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{1}{4}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{1}{3}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{1}{2}\)
 

5.如图.在四棱锥中.底面\(ABCD\)是平行四边形,点\(M\)为棱\(AB\)上一点\(AM=2MB\).点\(N\)为棱\(PC\)上一点,
  (1)若\(PN=2NC\),求证:\(MN∥\)平面\(PAD\)
  (2)若\(MN∥\)平面\(PAD\),求证:\(PN=2NC\)
image.png
 

参考答案

  1. 答案 \(D\)

  2. 答案 \(C\)
    解析 \(\because\)在空间四边形\(ABCD\)中,\(E\)\(F\)\(G\)\(H\)分别是\(AB\)\(BC\)\(CD\)\(DA\)上的点,\(BD∥\)平面\(EFGH\)
    \(\therefore BD∥EH\)\(BD∥FG\)
    \(E\)\(F\)\(G\)\(H\)未必是各边的中点,故\(A\)\(B\)错误;
    \(\therefore AE:EB=AH:HD\),故\(C\)正确;
    \(\because EH∥FG\)\(\therefore\) 四边形\(EFGH\)是平行四边形或梯形,故\(D\)错误.
    故选:\(C\)
    image.png

  3. 答案 \(B\)
    解析 连接\(CD\),交\(PE\)\(G\),连接\(FG\),如图,
    image.png
    \(\because AD∥\)平面\(PEF\),平面\(ADC\cap\)平面\(PEF=FG\)
    \(\therefore AD∥FG\)
    \(\because\)\(D\)\(E\)分别为棱\(PB\)\(BC\)的中点.
    \(\therefore G\)\(△PBC\)的重心,
    \(\therefore \dfrac{A F}{F C}=\dfrac{D G}{G C}=\dfrac{1}{2}\)
    故选:\(B\)

  4. 答案\(B\)
    解析 连接\(AC\)\(BE\)于点\(M\),连接\(FM\)
    \(\because PA∥\)平面\(EBF\)\(PA\subset\) 平面\(PAC\),平面\(PAC\cap\)平面\(EBF=FM\)
    \(\therefore PA∥FM\)
    \(\dfrac{A E}{E D}=\dfrac{1}{3}\),可得 \(A E=\dfrac{1}{4} A D=\dfrac{1}{4} B C\)
    \(\therefore \dfrac{P F}{F C}=\dfrac{A M}{M C}=\dfrac{A E}{B C}=\dfrac{\dfrac{1}{4} B C}{B C}=\dfrac{1}{4}\)
    故选:\(B\)
    image.png

  5. 证明 (1)过\(N\)\(NE∥CD\)\(PD\)\(E\),连接\(AE\)
    \(\dfrac{E N}{C D}=\dfrac{P N}{P C}=\dfrac{2}{3}\)\(\therefore E N=\dfrac{2}{3} C D\)
    \(AM=2MB\)\(\therefore A M=\dfrac{2}{3} A B\)
    \(AB=CD\)\(AB∥ CD\)\(\therefore AM=EN\)\(AM∥ EN\)
    \(\therefore\)四边形\(AMNE\)是平行四边形,
    \(\therefore MN∥AE\),又\(MN\not \subset\)平面\(PAD\)\(AE\subset\)平面\(PAD\)\(\therefore MN∥\)平面\(PAD\)
    (2)过\(N\)\(NE∥CD\)\(PD\)\(E\)
    \(\because NE∥CD∥AB\)\(\therefore NE∥AB\)
    \(\therefore A\)\(M\)\(N\)\(E\)四点共面,
    \(\because MN∥\)平面\(PAD\)\(MN\subset\)平面\(AMNE\),平面\(AMNE\cap\)平面\(PAD=AE\)
    \(\therefore MN∥AE\)
    \(\therefore\)四边形\(AMNE\)是平行四边形, \(\therefore N E=A M=\dfrac{2}{3} A B=\dfrac{2}{3} C D\)
    \(\therefore \dfrac{P N}{P C}=\dfrac{N E}{C D}=\dfrac{2}{3}\)\(\therefore PN=2NC\)
     

分层练习

【A组---基础题】

1.如果直线\(a∥\)平面\(\alpha\),那么直线\(a\)与平面\(\alpha\)内的(  )
 A.一条直线不相交 \(\qquad \qquad \qquad \qquad\) B.两条直线不相交
 C.无数条直线不相交 \(\qquad \qquad \qquad \qquad\) D.任意一条直线不相交
 

2.下面命题中正确的个数是(  )
①若直线\(l\)上有无数个点不在平面\(\alpha\)内,则\(l∥\alpha\)
②若直线\(l\)与平面\(\alpha\)平行,则\(l\)与平面\(\alpha\)内的任意一条直线都平行;
③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行;
④若直线\(l\)与平面\(\alpha\)平行,则\(l\)与平面\(\alpha\)内的任意一条直线都没有公共点.
 A.\(0\) \(\qquad \qquad \qquad \qquad\) B.\(1\) \(\qquad \qquad \qquad \qquad\) C.\(2\) \(\qquad \qquad \qquad \qquad\) D.\(3\)
 

3.如图,在下列四个正方体中,\(A\)\(B\)为正方体的两个顶点,\(M\)\(N\)\(Q\)为所在棱的中点,则在这四个正方体中,直线\(AB\)与平面\(MNQ\)不平行的是(  )
 A.image.png \(\qquad\) B.image.png \(\qquad\) C.image.png \(\qquad\) D.image.png
 

4.一几何体的平面展开图如图所示,其中四边形\(ABCD\)为正方形,\(E\)\(F\)分别为\(PB\)\(PC\)的中点,在此几何体中,下面结论错误的是(  )
image.png
 A.直线\(AE\)与直线\(BF\)异面 \(\qquad \qquad \qquad \qquad\) B.直线\(AE\)与直线\(DF\)异面
 C.直线\(EF∥\)平面\(PAD\) \(\qquad \qquad \qquad \qquad\) D.直线\(EF∥\)平面\(ABCD\)
 

  1. 如图,在空间四边形\(ABCD\)中,\(M∈AB\)\(N∈AD\),若 \(\dfrac{A M}{M B}=\dfrac{A N}{N D}\),则直线\(MN\)与平面\(BDC\)的位置关系是\(\underline{\quad \quad}\)
    image.png
     

6.如图,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\)\(BC\)的中点,\(F\)为正方体棱的中点,则满足条件直线\(EF∥\)平面\(ACD_1\)的点\(F\)的个数是\(\underline{\quad \quad}\)
image.png
 

7.如图所示,\(P\)\(▱ABCD\)所在平面外一点,\(E\)\(AD\)的中点,\(F\)\(PC\)上一点,当\(PA∥\)平面\(EBF\)时, \(\dfrac{P F}{F C}=\) \(\underline{\quad \quad}\)
image.png
 

8.如图:平行四边形\(ABCD\)和平行四边形\(CDEF\)有一条公共边\(CD\)\(M\)\(FC\)的中点,证明:\(AF∥\)平面\(MBD\)
image.png
 
 

9.如图,已知在四棱锥\(P﹣ABCD\)中,底面\(ABCD\)是平行四边形,\(M\)\(PC\)的中点,在\(DM\)上任取一点\(G\),过\(G\)\(AP\)作平面\(PAHG\)交平面\(DMB\)\(GH\),求证:
  (1)求证:\(BC∥\)平面\(PAD\)\(\qquad\) (2)求证:\(AP∥\)平面\(BDM\);(3)求证:\(AP∥GH\)
image.png
 
 

10.如图所示,四边形\(EFGH\)为空间四边形\(ABCD\)的一个截面,若截面为平行四边形.
  (1)求证:\(AB∥\)平面\(EFGH\)\(CD∥\)平面\(EFGH\).
  (2)若\(AB=4\)\(CD=6\),求四边形\(EFGH\)周长的取值范围.
image.png
 
 
 

参考答案

  1. 答案 \(D\)

  2. 答案 \(B\)
    解析 如图所示:
    image.png
    我们借助长方体模型,棱\(AA_1\)所在直线有无数点在平面\(ABCD\)外,但棱\(AA_1\)所在直线与平面\(ABCD\)相交,所以命题①不正确.
    \(A_1 B_1\)所在直线平行于平面\(ABCD\)\(A_1 B_1\)显然不平行于\(BD\),所以命题②不正确.
    \(A_1 B_1∥AB\)\(A_1 B_1\)所在直线平行于平面\(ABCD\),但直线\(AB\subset\)平面\(ABCD\)
    所以命题③不正确.
    \(l\)与平面\(\alpha\)平行,则\(l\)\(\alpha\)无公共点,\(l\)与平面\(\alpha\)内所有直线都没有公共点,所以命题④正确.

  3. 答案 \(B\)
    解析 对于选项\(A\),由于\(AB∥MQ\),结合线面平行判定定理可知\(AB\)与平面\(MNQ\)平行;
    对于选项\(B\),如图,
    image.png
    \(O\)为底面对角线的交点,可得\(AB∥OQ\)
    \(OQ\cap\)平面\(MNQ=Q\)
    所以直线\(AB\)与平面\(MNQ\)不平行.
    对于选项\(C\),由题意,可得\(AB∥MN\),结合线面平行判定定理可知\(AB\)与平面\(MNQ\)平行;
    对于选项\(D\),由于\(AB∥MQ\),结合线面平行判定定理可知\(AB\)与平面\(MNQ\)平行;
    故选:\(B\)

  4. 答案\(B\)
    解析 由题可知,该几何体为正四棱锥,
    image.png
    \(A\),可假设\(AE\)\(BF\)共面,由图可知,点\(F\)不在平面\(ABE\)中,故矛盾,\(A\)正确;
    \(B\),因\(E\)\(F\)\(BP\)\(CP\)中点,故\(EF∥BC\),又四边形\(ABCD\)为正方形,所以\(AD∥BC\),故\(EF∥AD\)\(A\)\(D\)\(E\)\(F\)四点共面,\(B\)错;
    \(C\),由\(B\)的证明可知,\(EF∥AD\),又\(AD\subset\)平面\(PAD\),故直线\(EF∥\)平面\(PAD\)\(C\)正确;
    \(D\),同理由\(B\)的证明可知,\(EF∥BC\),又\(BC\subset\) 平面\(ABCD\),故直线\(EF∥\)平面\(ABCD\)\(D\)正确;
    故选:\(B\)

  5. 答案 平行
    解析 在平面\(ABD\)中,\(\dfrac{A M}{M B}=\dfrac{A N}{N D}\)\(\therefore MN∥BD\)
    \(MN\not \subset\)平面\(BCD\)\(BD\subset\) 平面\(BCD\)
    \(\therefore MN∥\)平面\(BCD\)
    故答案为:平行

  6. 答案 \(5\)
    解析 \(\because F\)为正方体棱的中点,
    由题意可取棱\(CC_1\)\(C_1 D_1\)\(D_1 A_1\)\(AA_1\)\(AB\)的中点\(F_1\)\(F_2\)\(F_3\)\(F_4\)\(F_5\)
    image.png
    由面面平行的判断定理显然可得面\(EF_1 F_2 F_3 F_4 F_5||\)平面\(ACD_1\)
    \(F\)可以取点\(F_1\)\(F_2\)\(F_3\)\(F_4\)\(F_5\)中的任何一个都满足条件直线\(EF∥\)平面\(ACD_1\)
    即满足条件直线\(EF∥\)平面\(ACD_1\)的点\(F\)的个数是\(5\)
    故答案为:\(5\)

  7. 答案 \(\dfrac{1}{2}\)
    解析 连接\(AC\)\(BE\)于点\(M\),连接\(FM\)
    \(\because PA∥\)平面\(EBF\)\(PA\subset\)平面\(PAC\),平面\(PAC\cap\)平面\(EBF=EM\)
    \(\therefore PA∥EM\)\(\therefore \dfrac{P F}{F C}=\dfrac{A M}{M C}=\dfrac{A E}{B C}=\dfrac{1}{2}\)
    故答案为:\(\dfrac{1}{2}\)
    image.png

  8. 证明 连接\(AC\),交\(BD\)\(O\),连接\(MO\)
    image.png
    \(\because\)四边形\(ABCD\)为平行四边形,则\(O\)\(AC\)的中点,
    \(\because M\)\(FC\)的中点,
    \(OM\)\(△ACF\)的中位线,
    \(OM∥AF\)
    \(\because AF\not \subset\)平面\(MBD\)\(OM\subset\) 平面\(MBD\)
    \(\therefore AF∥\)平面\(MBD\)

  9. 证明 (1)证明:因为四边形\(ABCD\)为平行四边形,则\(BC∥AD\)
    \(\because BC\not \subset\)平面\(PAD\)\(AD\subset\)平面\(PAD\)
    因此,\(BC∥\)平面\(PAD\)
    (2)证明:连接AC交BD于点N,连接MN,
    image.png
    因为四边形\(ABCD\)为平行四边形,\(AC\cap BD=N\),则\(N\)\(AC\)的中点,
    又因为\(M\)\(PC\)的中点,则\(PA∥MN\)
    \(\because AP\not \subset\)平面\(BDM\)\(MN\subset\)平面\(BDM\)
    \(\therefore AP∥\)平面\(BDM\)
    (3)证明:\(\because AP∥\)平面\(BDM\)\(AP\subset\)平面\(APGH\),平面\(APGH\cap\)平面\(BDM=GH\)
    \(\therefore AP∥GH\)

  10. 答案 (1) 略; (2) \((8,12)\)
    解析 (1)证明 \(\because\)四边形\(EFGH\)为平行四边形,\(\therefore EF∥HG\).
    \(\because HG\subset\)平面\(ABD\)\(\therefore EF∥\)平面\(ABD\).
    \(\because EF\subset\)平面\(ABC\),平面\(ABD\cap\)平面\(ABC=AB\)
    \(\therefore EF∥AB\).
    \(\therefore AB∥\)平面\(EFGH\).
    同理可证,\(CD∥\)平面\(EFGH\).
    (2)解 设\(EF=x(0<x<4)\),由于四边形\(EFGH\)为平行四边形,
    \(\therefore \dfrac{C F}{C B}=\dfrac{x}{4}\).则 \(\dfrac{F G}{6}=\dfrac{B F}{B C}=\dfrac{B C-C F}{B C}=1-\dfrac{x}{4}\).
    从而 \(F G=6-\dfrac{3}{2} x\).
    \(\therefore\)四边形\(EFGH\)的周长 \(l=2\left(x+6-\dfrac{3}{2} x\right)=12-x\).
    \(0<x<4\),则有\(8<l<12\)
    \(\therefore\)四边形\(EFGH\)周长的取值范围是\((8,12)\).
     

【B组---提高题】

1.如图,在四面体\(ABCD\)中,\(AB=CD=2\)\(AD=BD=3\)\(AC=BC=4\),点\(E\)\(F\)\(G\)\(H\)分别在棱\(AD\)\(BD\)\(BC\)\(AC\)上,若直线\(AB\)\(CD\)都平行于平面\(EFGH\),则四边形\(EFGH\)面积的最大值是(  )
image.png
 A.\(\dfrac{1}{2}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{\sqrt{2}}{2}\) \(\qquad \qquad \qquad \qquad\) C.\(1\) \(\qquad \qquad \qquad \qquad\) D.\(2\)
 

2.如图,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\)\(F\)\(G\)分别是\(AB\)\(CC_1\)\(AD\)的中点.
  (1)证明:\(EG∥\)平面\(D_1 B_1 C\)
  (2)棱\(CD\)上是否存在点\(T\),使\(AT∥\)平面\(B_1 EF\)?若存在,求出 \(\dfrac{D T}{D C}\)的值;若不存在,请说明理由.
image.png
 
 
 

参考答案

  1. 答案 \(C\)
    解析 \(\because\)直线\(AB\)平行于平面\(EFGH\),且平面\(ABC\)交平面\(EFGH\)\(HG\)
    \(\therefore HG∥AB\)
    同理\(EF∥AB\)\(FG∥CD\)\(EH∥CD\)
    所以\(FG∥EH\)\(EF∥HG\)
    故:四边形\(EFGH\)为平行四边形.
    \(\because AD=BD\)\(AC=BC\)的对称性,可知\(AB⊥CD\)
    所以四边形\(EFGH\)为矩形.
    \(BF∶BD=BG∶BC=FG∶CD=x\)\((0≤x≤1)\)
    \(FG=2x\)\(HG=2(1-x)\)
    \(S_{E F G H}=F G \times H G=4 x(1-x)=-4\left(x-\dfrac{1}{2}\right)^2+1\)
    根据二次函数的性质可知: \(S_{E F G H}\)面积的最大值\(1\)
    故选:\(C\)

  2. 答案 (1) 略; (2) 当 \(\dfrac{D T}{D C}=\dfrac{1}{4}\)时,\(AT∥\)平面\(B_1 EF\)
    解析 (1)连接\(BD\)\(B_1 D_1\)\(CD_1\)
    image.png
    \(\because E\)\(G\)分别为\(AB\)\(AD\)中点,
    \(\therefore EG∥BD\)
    \(\because BB_1∥DD_1\)\(BB_1=DD_1\)
    \(\therefore\)四边形\(BDD_1 B_1\)为平行四边形,
    \(\therefore BD∥B_1 D_1\)
    \(\therefore EG∥B_1 D_1\)
    \(EG\not \subset\)平面\(D_1 B_1 C\)\(B_1 D_1\subset\)平面\(D_1 B_1 C\)
    \(\therefore EG∥\)平面\(D_1 B_1 C\)
    (2)假设在棱\(CD\)上存在点\(T\),使得\(AT∥\)平面\(B_1 EF\)
    延长\(BC\)\(B_1 F\)交于\(H\),连接\(EH\)\(DC\)\(K\)
    image.png
    \(\because CC_1∥BB_1\)\(F\)\(CC_1\)中点,
    \(\therefore C\)\(BH\)中点,
    \(\because CD∥AB\)\(\therefore KC∥AB\)
    \(\therefore K C=\dfrac{1}{2} E B=\dfrac{1}{4} D C\)
    \(\because AT∥\)平面\(B_1 EF\)\(AT\subset\)平面\(ABCD\),平面\(B_1 EF\cap\)平面\(ABCD=EK\)
    \(\therefore AT∥EK\)
    \(TK∥AE\)
    \(\therefore\)四边形\(ATKE\)为平行四边形,
    \(\therefore TK=AE=\dfrac{1}{2} DC\)
    \(\therefore D T=K C=\dfrac{1}{4} D C\)
    \(\therefore\)\(\dfrac{D T}{D C}=\dfrac{1}{4}\)时,\(AT∥\)平面\(B_1 EF\)
     

【C组---拓展题】

1.在梯形\(PBCD\)中,\(A\)\(PB\)的中点,\(DC∥PB\)\(DC⊥CB\),且\(PB=2BC=2DC=4\)(如图\(1\)所示),将三角形\(PAD\)沿\(AD\)翻折,使\(PB=2\)(如图\(2\)所示),\(E\)是线段\(PD\)上的一点,且\(PE=2DE\)
image.png
  (1)求四棱锥\(P-ABCD\)的体积;
  (2)在线段\(AB\)上是否存在一点F,使\(AE∥\)平面\(PCF\)?若存在,请指出点\(F\)的位置并证明,若不存在请说明理由.
 
 
 

参考答案

  1. 答案 (1) \(\dfrac{4 \sqrt{3}}{3}\); (2) 存在点\(F\),使\(AE∥\)平面\(PCF\),此时 \(A F=\dfrac{2}{3} A B\).
    解析 (1)如图所示,过点\(P\)\(PO⊥AB\)于点\(O\)
    \(\because\)在梯形\(PBCD\)\(AD⊥PA\)\(AD⊥AB\)
    \(\therefore\)翻折后仍有\(AD⊥PA\)\(AD⊥AB\),又\(\because PA\cap AB=A\)
    \(\therefore AD⊥\)平面\(PAB\)\(\because PO\subset\)平面\(PAB\)
    \(\therefore AD⊥PO\),又\(\because PO⊥AB\)\(AD\cap AB=A\)\(AD\subset\)平面\(ABCD\)\(AB\subset\)平面\(ABCD\)
    \(\therefore PO⊥\)平面\(ABCD\)
    \(\because PA=AB=PB=2\)\(\therefore △PAB\)是等边三角形,
    \(\therefore P O=\sqrt{3}\)
    \(\therefore V_{P-A B C D}=\dfrac{1}{3} S_{A B C D} \cdot P O=\dfrac{1}{3} \times 2 \times 2 \times \sqrt{3}=\dfrac{4 \sqrt{3}}{3} \text {, }\)
    (2)存在点\(F\),使\(AE∥\)平面\(PCF\),此时 \(A F=\dfrac{2}{3} A B\),理由如下:
    \(E\)\(EG∥CD\)\(EG\)\(PC\)\(G\)
    \(F\)是线段\(AB\)上的一点,且 \(A F=\dfrac{2}{3} A B\)
    连接\(FG\)\(PF\)\(CF\)
    \(\because PE=2DE\)\(EG∥CD\)
    \(\therefore E G=\dfrac{2}{3} C D\)\(EG∥CD\)
    \(\because A F=\dfrac{2}{3} C D\)\(AF∥CD\)
    \(\therefore EG=AF\)\(EG∥AF\)\(\therefore\) 四边形\(AEGF\)是平行四边形,
    \(\therefore AE∥GF\),又\(\because AE\not \subset\)平面\(PCF\)\(GF\subset\)平面\(PCF\)
    \(\therefore AE∥\)平面\(PCF\)
    image.png