《信息安全系统设计与实现》第八周学习笔记

发布时间 2023-10-29 01:11:52作者: 江河入海流

 

第四章 并发编程

并行计算

是一种计算方案,它尝试使用多个执行并行算法的处理器更快速的解决问题

并行性与并发性

并行算法只识别可并行执行的任务。CPU系统中,并发性是通过多任务处理来实现的

线程

线程的原理

某进程同一地址空间上的独立执行单元

线程的优点

线程创建和切换速度更快
线程的响应速度更快
线程更适合并行运算

线程的缺点

线程需要来自用户的明确同步
库函数不安全
单CPU系统中,线程解决问题实际上要比使用顺序程序慢

线程操作

线程可在内核模式或用户模式下执行
其中涉及Linux下的pthread并发编程

线程管理函数

创建线程

使用pthread_create()
int pthread_create(pthread_t *pthread_id,pthread_attr_t attr,void (func)(void),void *arg)
注意:
1、pthread_id是指向pthread_t类型变量的指针
2、attr如果是NULL,将使用默认属性创建线程

线程ID

int pthread_equal(pthread_t t1,pthread_t t2);
不同的线程,返回0,否则返回非0

线程终止

int pthread_exit(void *status);

线程连接

int pthread_join(pthread_t thread,void **status_ptr)

线程示例程序

用线程计算矩阵的和

点击查看代码
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#define ROWS 3
#define COLS 3
#define NUM_THREADS 3

int matrix[ROWS][COLS] = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};
int sum = 0;
pthread_mutex_t mutex_sum;

void *calc_sum(void *thread_id) {
    int tid = *(int*)thread_id;
    int start_row = tid * ROWS / NUM_THREADS;
    int end_row = (tid + 1) * ROWS / NUM_THREADS;
    int local_sum = 0;
    
    for (int i = start_row; i < end_row; i++) {
        for (int j = 0; j < COLS; j++) {
            local_sum += matrix[i][j];
        }
    }

    pthread_mutex_lock(&mutex_sum);
    sum += local_sum;
    pthread_mutex_unlock(&mutex_sum);

    pthread_exit(NULL);
}

int main() {
    pthread_t threads[NUM_THREADS];
    int thread_ids[NUM_THREADS];

    pthread_mutex_init(&mutex_sum, NULL);

    for (int i = 0; i < NUM_THREADS; i++) {
        thread_ids[i] = i;
        pthread_create(&threads[i], NULL, calc_sum, &thread_ids[i]);
    }

    for (int i = 0; i < NUM_THREADS; i++) {
        pthread_join(threads[i], NULL);
    }

    pthread_mutex_destroy(&mutex_sum);

    printf("The sum of the matrix is %d\n", sum);

    return 0;
}

用线程快速排序

点击查看代码
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define N 10
typedef struct{
    int upperbound;
    int lowerbound;
}PARM;

int A[N]={5,1,6,4,7,2,9,8,0,3};

int print()	// print current a[] contents
{
    int i;
    printf("[ ");
    for (i=0; i<N; i++)
    {
        printf("%d ", A[i]);
    }
    printf("]\n");
}

void *qsort_1(void *aptr)
{
    PARM *ap, aleft, aright;
    int pivot, pivotIndex, left, right, temp; 
    int upperbound, lowerbound;

    pthread_t me, leftThread, rightThread; 
    me = pthread_self();
    ap = (PARM *)aptr; 
    upperbound = ap->upperbound; 
    lowerbound = ap->lowerbound;
    pivot = A[upperbound]; 
    left = lowerbound - 1; 
    right = upperbound;
    if (lowerbound >= upperbound) 
        pthread_exit(NULL);
    
    while (left < right) 
    {
        do { left++;} while (A[left] < pivot);
            do { right--;}while (A[right] > pivot);
        if (left < right )
        {
            temp = A[left]; 
            A[left] = A[right];
            A[right] = temp;
        }
    }
    print();
    pivotIndex = left; 
    temp = A[pivotIndex]; 
    A[pivotIndex] = pivot; 
    A[upperbound] = temp; // start the "recursive threads" 
    aleft.upperbound = pivotIndex - 1;
    aleft.lowerbound = lowerbound; 
    aright.upperbound = upperbound; 
    aright.lowerbound = pivotIndex + 1; 
    printf("%lu: create left and right threads\n", me);
    pthread_create(&leftThread, NULL, qsort_1, (void *)&aleft);
    pthread_create(&rightThread, NULL, qsort_1, (void *)&aright);// wait for left and right threads 
    pthread_join(leftThread, NULL); 
    pthread_join(rightThread, NULL); 
    printf("%lu: joined with left & right threads\n", me);
}

int main(int argc, char *argv[])
{
    PARM arg;
    int i, *array; 
    pthread_t me, thread; 
    me = pthread_self();
    printf("main %lu: unsorted array =" ,me);
    print();
    arg.upperbound = N-1;
    arg.lowerbound = 0;
    printf("main %lu create a thread to do QS\n", me);
    pthread_create(&thread, NULL, qsort_1, (void *)&arg); // wait for QS thread to finish 
    pthread_join(thread, NULL);
    printf("main %lu sorted array = ", me); 
    print();
}

线程同步

竞态条件:修改结果取决于线程执行顺序

互斥量

在pthread中,锁被称为互斥量
pthread_mutex_lock(&m);
access shared data object;
pthread_mutex_unlock(&m);
示例

点击查看代码
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define N 4
int A[N][N];

int total = 0; 
pthread_mutex_t *m; 

void *func(void *arg)
{
    int i, row, sum = 0;
    pthread_t tid = pthread_self(); // get thread ID number 
    row = (int)arg;	// get row number from arg
    printf("Thread %d [%lu] computes sum of row %d\n", row, tid, row);
    for (i=0; i<N; i++)
        sum += A[row][i]; 
    printf("Thread %d [%lu] update total with %d : Thread %d : ", row, tid, sum,row);
    //pthread_mutx_lock(m); 
    pthread_mutex_lock(m);
        total += sum;
    pthread_mutex_unlock(m);
    printf ("total = %d\n", total);
}

int main (int argc, char *argv[])
{
    pthread_t thread[N];
    int i, j, r;
    void *status;
    printf("Main: initialize A matrix\n");
    for (i=0; i<N; i++)
    {
        //sum[i] = 0;
        for (j=0; j<N; j++)
        {
            A[i][j] = i*N + j + 1;
            printf("%4d ", A[i][j]);
        }
        printf("\n");
    }
    // create a mutex m
    m = (pthread_mutex_t *)malloc(sizeof(pthread_mutex_t)); 
    pthread_mutex_init(m, NULL); // initialize mutex m 
    printf("Main: create %d threads\n", N);
    for(i=0; i<N; i++)
    {
        pthread_create(&thread[i], NULL, func, (void *)i);
    }
    printf("Main: try to join with threads\n");
    for(i=0; i<N; i++)
    {
        pthread_join(thread[1], &status);   
        printf("Main: joined with %d [%lu]: status=%d\n",i, thread[i]/ (int)status);
    }
    printf("Main: tatal = %d\n", total); 
    pthread_mutex_destroy (m); // destroy mutex m 
    pthread_exit(NULL);
}
###死锁预防 死锁是一个状态,在这种状态下,许多执行实体相互等待,无法继续进行下去

条件变量

条件变量可以通过两种方法进行初始化

静态方法
动态方法

生产者-消费者问题

共享全局变量
int buf[NBUF];
int head,tail;
int data;

点击查看代码
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#define NBUF 5
#define N	10
// shared global variables 
int buf[NBUF];	// circular buffers
int head, tail;	// indices
int data;	// number of full buffers
pthread_mutex_t mutex; 
pthread_cond_t empty, full;

int init()
{
    head = tail = data = 0; 
    pthread_mutex_init(&mutex, NULL); 
    pthread_cond_init(&full, NULL); 
    pthread_cond_init(&empty, NULL);
}

void *producer() 
{
    int i;
    pthread_t me = pthread_self();
    for (i=0; i<N; i++) // try to put N items into buf[]
    {
        pthread_mutex_lock(&mutex);	// lock mutex
        if (data == NBUF)
        {
            printf ("producer %lu: all bufs FULL: wait\n", me);
            pthread_cond_wait(&empty, &mutex); // wait
        }
        buf[head++] = i+1;
        head %= NBUF;
        data++;
        printf("producer %lu: data=%d value=%d\n", me, data, i+1);
        pthread_mutex_unlock (&mutex); 
        pthread_cond_signal(&full);
    }
    printf("producer %lu: exit\n", me);
}

void *consumer()
{
    int i, c;
    pthread_t me = pthread_self();
    for (i=0; i<N; i++)
    {
        pthread_mutex_lock(&mutex);	// lock mutex
        if (data == 0)
        {
            printf ("consumer %lu: all bufs EMPTY: wait\n", me); 
            pthread_cond_wait(&full, &mutex); // wait
        }
        c = buf[tail++];	// get an item
        tail %= NBUF;
        data--;	// dec data by 1
        printf("consumer %lu: value=%d\n", me, c); 
        pthread_mutex_unlock(&mutex);	// unlock mutex
        pthread_cond_signal(&empty);	// unblock a producer, if any
    }
    printf("consumer %lu: exit\n", me);
}

int main ()
{
    pthread_t pro, con;
    init();
    printf("main: create producer and consumer threads\n");
    pthread_create(&pro, NULL, producer, NULL);
    pthread_create(&con, NULL, consumer, NULL);
    printf("main: join with threads\n");
    pthread_join(pro, NULL);
    pthread_join(con, NULL);
    printf("main: exit\n");
}
###信号量 信号量是进程同步的一般机制 信号量和条件变量

屏障

线程连接操作允许某线程等待其他线程终止
在pthread中可以采用的机制是屏障以及一系列屏障函数

用并发线程解线性方程组

示例

点击查看代码
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <math.h>
#define N 4
double A[N][N+1]; 
pthread_barrier_t barrier;

int print_matrix()
{
    int i, j;
    printf("----------------------------\n");
    for(i=0; i<N; i++)
    {
        for(j=0; j < N+1; j++) 
            printf("%6.2f	", A[i][j]);

        printf("\n");
    }
}

void *ge(void *arg) // threads function: Gauss elimination
{
    int i, j, prow;
    int myid = (int)arg;
    double temp, factor;
    for(i=0; i<N-1; i++)
    {
        if (i == myid)
        {
            printf("partial pivoting by thread %d on row %d: ", myid, i);
            temp = 0.0; prow = i;
            for (j=i; j<=N; j++)
            {
                if (fabs(A[j][i]) > temp)
                {
                    temp = fabs(A[j][i]); 
                    prow = j;
                }
            }
        
            printf("pivot_row=%d pivot=%6.2f\n", prow, A[prow][i]); 
            if (prow != i)	// swap rows
            {
                for (j=i; j<N+1; j++)
                {
                    temp = A[i][j];
                    A[i][j] = A[prow][j];
                    A[prow][j] = temp;
                }
            }
        }
        // wait for partial pivoting done 
        pthread_barrier_wait(&barrier); 
        for(j=i+1; j<N; j++)
        {
            if (j == myid)
            {
                printf("thread %d do row %d\n", myid, j); 
                factor = A[j][i]/A[i][i]; 
                for (int k=i+1; k<=N; k++)
                    A[j][k] -= A[i][k]*factor;
                A[j][i] = 0.0;
            }     
        }
        // wait for current row reductions to finish 
        pthread_barrier_wait(&barrier);
        if (i == myid)
            print_matrix();
    }
}

int main(int argc, char *argv[])
{
    int i, j;
    double sum;
    pthread_t threads[N];
    printf("main: initialize matrix A[N][N+l] as [A|B]\n");
    for (i=0; i<N; i++)
        for (j=0; j<N; j++)
            A[i][j] = 1.0;
    for (i=0; i<N; i++)
        A[i][N-i-1] = 1.0*N;
    for (i=0; i<N; i++)
    {
        A[i][N] = 2.0*N - 1;
    }
    print_matrix();	// show initial matrix [A|B]

    pthread_barrier_init(&barrier, NULL, N); // set up barrier

    printf("main: create N=%d working threads\n", N);
    for (i=0; i<N; i++)
    { 
        pthread_create(&threads[i], NULL, ge, (void *)i);
    }

    printf("main: wait for all %d working threads to join\n", N);
    for (i=0; i<N; i++)
    {
        pthread_join(threads[i], NULL);
    }

    printf("main: back substitution :");
    for (i=N-1; i>=0; i--)
    {
        sum = 0.0;
        for (j=i+1; j<N; j++)
            sum += A[i][N];
            A[i][N] = (A[i][N]- sum)/A[i][i];
    }
    // print solution
    printf("The solution is :\n");
    for(i=0; i<N; i++)
    {
        printf("%6.2f  ",A[i][N]);
    }
    printf("\n");
}
###Linux中的线程 进程和线程都是由clone()系统调用创建的具有以下原型

int clone(int (fn)(void),void *child_stack,int flags,void *arg)

问题及解决方法

信号量与条件变量的区别:
条件变量、互斥锁——主要用于线程间通信
pthread_cond_wait()
pthread_cond_wait(&m_cond,&m_mutex); 指的是等待条件变量,总和一个互斥锁结合使用。

pthread_cond_wait() 函数执行时先自动释放指定的互斥锁,然后等待条!
件变量的变化;在函数调用返回之前(即wait成功获得cond条件的时候),会自动将指定的互斥量重新锁住(即在“等待的条件变量满足条件时,会重新锁住指定的锁”)。

苏格拉底挑战

线程:




互斥量