《动手学深度学习 Pytorch版》 9.5 机器翻译与数据集

发布时间 2023-10-19 19:27:59作者: AncilunKiang

机器翻译(machine translation)指的是将序列从一种语言自动翻译成另一种语言,基于神经网络的方法通常被称为神经机器翻译(neural machine translation)。

import os
import torch
from d2l import torch as d2l

9.5.1 下载和预处理数据集

“Tab-delimited Bilingual Sentence Pairs”数据集是由双语句子对组成的“英-法”数据集,数据集中的每一行都是制表符分隔的文本序列对,序列对由英文文本序列和翻译后的法语文本序列组成。请注意,每个文本序列可以是一个句子,也可以是包含多个句子的一个段落。在这个将英语翻译成法语的机器翻译问题中,英语是源语言(source language), 法语是目标语言(target language)。

#@save
d2l.DATA_HUB['fra-eng'] = (d2l.DATA_URL + 'fra-eng.zip',
                           '94646ad1522d915e7b0f9296181140edcf86a4f5')

#@save
def read_data_nmt():
    """载入“英语-法语”数据集"""
    data_dir = d2l.download_extract('fra-eng')
    with open(os.path.join(data_dir, 'fra.txt'), 'r',
             encoding='utf-8') as f:
        return f.read()

raw_text = read_data_nmt()
print(raw_text[:75])
Downloading ..\data\fra-eng.zip from http://d2l-data.s3-accelerate.amazonaws.com/fra-eng.zip...
Go.	Va !
Hi.	Salut !
Run!	Cours !
Run!	Courez !
Who?	Qui ?
Wow!	Ça alors !

原始文本数据需要经过几个预处理步骤,例如:

  • 用空格代替不间断空格(non-breaking space)

  • 使用小写字母替换大写字母

  • 在单词和标点符号之间插入空格。

#@save
def preprocess_nmt(text):
    """预处理“英语-法语”数据集"""
    def no_space(char, prev_char):
        return char in set(',.!?') and prev_char != ' '

    # 使用空格替换不间断空格
    # 使用小写字母替换大写字母
    text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()
    # 在单词和标点符号之间插入空格
    out = [' ' + char if i > 0 and no_space(char, text[i - 1]) else char
           for i, char in enumerate(text)]
    return ''.join(out)

text = preprocess_nmt(raw_text)
print(text[:80])
go .	va !
hi .	salut !
run !	cours !
run !	courez !
who ?	qui ?
wow !	ça alors !

9.5.2 词元化

在机器翻译中更喜欢单词级词元化(最先进的模型可能使用更高级的词元化技术)。

#@save
def tokenize_nmt(text, num_examples=None):
    """词元化“英语-法语”数据数据集"""
    source, target = [], []  # source 是源语言  target 是目标语言
    for i, line in enumerate(text.split('\n')):  # 按行遍历
        if num_examples and i > num_examples:  # 限制句子数
            break
        parts = line.split('\t')
        if len(parts) == 2:
            source.append(parts[0].split(' '))  # 分割成词元列表
            target.append(parts[1].split(' '))
    return source, target

source, target = tokenize_nmt(text)
source[:6], target[:6]
([['go', '.'],
  ['hi', '.'],
  ['run', '!'],
  ['run', '!'],
  ['who', '?'],
  ['wow', '!']],
 [['va', '!'],
  ['salut', '!'],
  ['cours', '!'],
  ['courez', '!'],
  ['qui', '?'],
  ['ça', 'alors', '!']])
#@save
def show_list_len_pair_hist(legend, xlabel, ylabel, xlist, ylist):
    """绘制列表长度对的直方图"""
    d2l.set_figsize()
    _, _, patches = d2l.plt.hist(
        [[len(l) for l in xlist], [len(l) for l in ylist]])
    d2l.plt.xlabel(xlabel)
    d2l.plt.ylabel(ylabel)
    for patch in patches[1].patches:
        patch.set_hatch('/')
    d2l.plt.legend(legend)

show_list_len_pair_hist(['source', 'target'], '# tokens per sequence',
                        'count', source, target);

image

9.5.3 词表

使用单词级词元化时,词表大小将明显大于使用字符级词元化时的词表大小。为了缓解这一问题,将出现次数少于2次的低频率词元视为相同的未知(“<unk>”)词元。 除此之外还指定了额外的特定词元,例如在小批量时用于将序列填充到相同长度的填充词元(“<pad>”),以及序列的开始词元(“<bos>”)和结束词元(“<eos>”)。这些特殊词元在自然语言处理任务中比较常用。

src_vocab = d2l.Vocab(source, min_freq=2,
                      reserved_tokens=['<pad>', '<bos>', '<eos>'])
len(src_vocab)
10012

9.5.4 加载数据集

在机器翻译中,每个样本都是由源和目标组成的文本序列对,其中的每个文本序列可能具有不同的长度,因此需要通过截断(truncation)和填充(padding)方式实现一次只处理一个小批量的文本序列。简言之就是多了截断,短了补齐。

#@save
def truncate_pad(line, num_steps, padding_token):
    """截断或填充文本序列"""
    if len(line) > num_steps:
        return line[:num_steps]  # 长了截断
    return line + [padding_token] * (num_steps - len(line))  # 短了填充

truncate_pad(src_vocab[source[0]], 10, src_vocab['<pad>'])
[47, 4, 1, 1, 1, 1, 1, 1, 1, 1]

定义 build_array_nmt 函数将文本序列转换成小批量数据集用于训练。将特定的“<eos>”词元添加到所有序列的末尾,用于表示序列的结束。

此外,还记录了每个文本序列的长度,统计长度时排除了填充词元。

#@save
def build_array_nmt(lines, vocab, num_steps):
    """将机器翻译的文本序列转换成小批量"""
    lines = [vocab[l] for l in lines]  # 将句子中的各词元转换为下标
    lines = [l + [vocab['<eos>']] for l in lines]  # 添加结束符
    array = torch.tensor([truncate_pad(  # 分成小批量
        l, num_steps, vocab['<pad>']) for l in lines])
    valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)  # 计算长度
    return array, valid_len

9.5.5 整合

#@save
def load_data_nmt(batch_size, num_steps, num_examples=600):
    """返回翻译数据集的迭代器和词表"""
    text = preprocess_nmt(read_data_nmt())  # 预处理
    source, target = tokenize_nmt(text, num_examples)  # 词元化
    src_vocab = d2l.Vocab(source, min_freq=2,  # 源语言词表
                          reserved_tokens=['<pad>', '<bos>', '<eos>'])
    tgt_vocab = d2l.Vocab(target, min_freq=2,  # 目标语言词表
                          reserved_tokens=['<pad>', '<bos>', '<eos>'])
    src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)  # 源语言小批量化
    tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)  # 目标语言小批量化
    data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
    data_iter = d2l.load_array(data_arrays, batch_size)
    return data_iter, src_vocab, tgt_vocab
train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8)
for X, X_valid_len, Y, Y_valid_len in train_iter:
    print('X:', X.type(torch.int32))
    print('X的有效长度:', X_valid_len)
    print('Y:', Y.type(torch.int32))
    print('Y的有效长度:', Y_valid_len)
    break
X: tensor([[ 39,  91,   4,   3,   1,   1,   1,   1],
        [139,  12,   4,   3,   1,   1,   1,   1]], dtype=torch.int32)
X的有效长度: tensor([4, 4])
Y: tensor([[ 92,  12,   5,   3,   1,   1,   1,   1],
        [111,   0,   4,   3,   1,   1,   1,   1]], dtype=torch.int32)
Y的有效长度: tensor([4, 4])

练习

(1)在 load_data_nmt 函数中尝试不同的 num_examples 参数值。这对源语言和目标语言的词表大小有何影响?

for num_examples in range(100, 1201, 100):
    train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size=2, num_steps=8, num_examples=num_examples)
    print(f"num_examples = {'%4d'%num_examples}      len(src_vocab) = {len(src_vocab)}      len(tgt_vocab) = {len(tgt_vocab)}")
num_examples =  100      len(src_vocab) = 40      len(tgt_vocab) = 40
num_examples =  200      len(src_vocab) = 69      len(tgt_vocab) = 67
num_examples =  300      len(src_vocab) = 102      len(tgt_vocab) = 107
num_examples =  400      len(src_vocab) = 130      len(tgt_vocab) = 125
num_examples =  500      len(src_vocab) = 159      len(tgt_vocab) = 163
num_examples =  600      len(src_vocab) = 184      len(tgt_vocab) = 201
num_examples =  700      len(src_vocab) = 208      len(tgt_vocab) = 224
num_examples =  800      len(src_vocab) = 229      len(tgt_vocab) = 250
num_examples =  900      len(src_vocab) = 249      len(tgt_vocab) = 286
num_examples = 1000      len(src_vocab) = 266      len(tgt_vocab) = 321
num_examples = 1100      len(src_vocab) = 293      len(tgt_vocab) = 359
num_examples = 1200      len(src_vocab) = 314      len(tgt_vocab) = 384

(2)某些语言(例如中文和日语)的文本没有单词边界指示符(例如空格)。对于这种情况,单词级词元化仍然是个好主意吗?为什么?

没有边界指示符不意味着没有单词,仍然是需要分词的,只是麻烦些。