数据结构 玩转数据结构 12-6 LR和RL的实现

发布时间 2023-04-16 11:08:19作者: 菜鸟乙

0    课程地址

https://coding.imooc.com/lesson/207.html#mid=14351

 

1    重点关注

1.1    破坏二分搜索树的四种情况

左左LL:新插入的节点导致不平衡,向上回溯找到第一个不平衡的节点在左孩子的左侧      

右右RR:新插入的节点导致不平衡,向上回溯找到第一个不平衡的节点在右孩子的右侧

左右LR:新插入的节点导致不平衡,向上回溯找到第一个不平衡的节点在左孩子的右侧

右左RL:新插入的节点导致不平衡,向上回溯找到第一个不平衡的节点在右孩子的左侧

 

 

1.2    LR解析和RL解析

  • LR

 

  • RL

 

 

1.3    LR和RL的解决

  • LR

左子树先左旋转,形成LL的情况,整棵树再右旋转,实现平衡

 

  • RL

右子树先右旋转,形成RR的情况,整棵树再左旋转,实现平衡


 

2    课程内容

2.1    LR和RL的不平衡情况分析

见1.2

 

2.2    LR和RL的实现平衡的解决思路

见1.3

 

2.3    LR和RL的实现平衡的代码实现

见3.1

 

2.4    实现自平衡的代码和退化成链表的二叉树性能差异测试

见3.1

 

3    Coding

3.1    coding

案例:傲慢与偏见 统计单词

 

  • 关键代码
 //左左情况
        if(balanceFactor>1&&getBalanceFactor(node.left)>=0){
            return rightRotate(node);
            //右右情况
        }else if(balanceFactor<-1&&getBalanceFactor(node.right)<=0){
            return leftRotate(node);
            //左右情况
        }else if(balanceFactor>1&&getBalanceFactor(node.left)<0){
            //先对左子节点左旋转,然后整体右旋转
            node.left = leftRotate(node.left);
            return rightRotate(node);
            //右左情况
        }else if(balanceFactor<-1&&getBalanceFactor(node.right)>0){
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }

 

  •  主类AVLTree:
package com.company;

import java.util.ArrayList;
import java.util.List;

public class AVLTree<K extends Comparable<K>,V> {


    //1     定义Node
    class Node{
        private K key;
        private V value;
        private Node left,right;
        private int height;

        public Node(K key, V value){
            this.key = key;
            this.value = value;
            this.left = null;
            this.right = null;
            this.height = 1;
        }

        @Override
        public String toString() {
            final StringBuffer sb = new StringBuffer("Node{");
            sb.append("key=").append(key);
            sb.append(", value=").append(value);
            sb.append('}');
            return sb.toString();
        }
    }

    //2     定义属性
    private int size;
    private Node root;

    /**
     * getHeight
     * @author weidoudou
     * @date 2023/4/1 11:34
     * @param node 请添加参数描述
     * @return int
     **/
    private int getHeight(Node node){
        if(null==node){
            return 0;
        }
        return node.height;
    }

    /**
     * getBalanceFactor
     * @author weidoudou
     * @date 2023/4/1 11:36
     * @param node 请添加参数描述
     * @return int
     **/
    private int getBalanceFactor(Node node){
        if(null==node){
            return 0;
        }
        return getHeight(node.left) - getHeight(node.right);
    }

    /**
     * 无参构造函数
     * @author weidoudou
     * @date 2023/1/1 11:09
     * @return null
     **/
    public AVLTree(){
        this.size = 0;
        this.root = null;
    }



    public boolean isEmpty() {
        return size==0?true:false;
    }

    public int getSize() {
        return size;
    }

    //3     定义包含函数
    private Node containsKey(K key,Node node){
        //结束条件
        if(null==node){
            return null;
        }

        //循环条件
        if(key.compareTo(node.key)<0){
            return containsKey(key,node.left);
        }else if(key.compareTo(node.key)>0){
            return containsKey(key, node.right);
        }else{//key.compareTo(node.key)=0 其实这个也是结束条件
            return node;
        }
    }

    public boolean contains(K key) {
        return containsKey(key,root)==null?false:true;
    }

    public V get(K key) {
        Node node = containsKey(key,root);
        if(null!=node){
            return node.value;
        }
        return null;
    }


    //3     递归,添加元素
    public Node add(K key,V value,Node node){
        //3.1   终止条件
        //3.1.1 要插入的元素和二叉树原有节点相同,这个不用判断,因为已经调了containsKey方法判断了
        if(node==null){
            size++;
            return new Node(key,value);
        }

        //3.1.2 最终插入左孩子
        if(key.compareTo(node.key)<0 ){
            node.left = add(key,value,node.left);
        }else if(key.compareTo(node.key)>0){
            node.right = add(key,value,node.right);
        }else{
            node.value = value;
        }

        node.height = 1+Math.max(getHeight(node.left),getHeight(node.right));
        int balanceFactor = getBalanceFactor(node);
        /*if(Math.abs(balanceFactor)>1){
            System.out.println("unbalanced:"+balanceFactor);
        }*/

        //左左情况
        if(balanceFactor>1&&getBalanceFactor(node.left)>=0){
            return rightRotate(node);
            //右右情况
        }else if(balanceFactor<-1&&getBalanceFactor(node.right)<=0){
            return leftRotate(node);
            //左右情况
        }else if(balanceFactor>1&&getBalanceFactor(node.left)<0){
            //先对左子节点左旋转,然后整体右旋转
            node.left = leftRotate(node.left);
            return rightRotate(node);
            //右左情况
        }else if(balanceFactor<-1&&getBalanceFactor(node.right)>0){
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }
        return node;
    }



    // 对节点y进行向右旋转操作,返回旋转后新的根节点x
    //        y                              x
    //       / \                           /   \
    //      x   T4     向右旋转 (y)        z     y
    //     / \       - - - - - - - ->    / \   / \
    //    z   T3                       T1  T2 T3 T4
    //   / \
    // T1   T2
    /**
     * 右旋转
     * 1    旋转
     * 2    变更高度
     * @author weidoudou
     * @date 2023/4/14 7:27
     * @param y 请添加参数描述
     * @return com.company.AVLTree<K,V>.Node
     **/
    private Node rightRotate(Node y){
        //1 右旋转
        Node x = y.left;
        Node T3 = x.right;
        x.right = y;
        y.left = T3;

        //2 变更高度
        y.height = Math.max(getHeight(y.left),getHeight(y.right))+1;
        x.height = Math.max(getHeight(x.left),getHeight(x.left))+1;
        return x;
    }


    // 对节点y进行向左旋转操作,返回旋转后新的根节点x
    //    y                             x
    //  /  \                          /   \
    // T1   x      向左旋转 (y)       y     z
    //     / \   - - - - - - - ->   / \   / \
    //   T2  z                     T1 T2 T3 T4
    //      / \
    //     T3 T4
    private Node leftRotate(Node y) {
        Node x = y.right;
        Node T2 = x.left;

        // 向左旋转过程
        x.left = y;
        y.right = T2;

        // 更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

    public void add(K key, V value) {
        root = add(key,value,root);
        /*Node node = containsKey(key,root);
        //未找到,插值
        if(node==null){
            //2.1   考虑特殊情况,如果是第一次调用,root为null
            if(root==null){
                root = new Node(key,value);
                size++;
            }else{
                //2.2   添加递归方法
                add(key,value,root);
            }
        }else{
            node.value = value;
        }*/
        //找到后,更新值
    }

    public void set(K key, V value) {
        Node node = containsKey(key,root);
        if(node == null){
            throw new IllegalArgumentException("要修改的值不存在");
        }
        node.value = value;
    }

    private Node remove(Node node,K key){
        //终止条件1 基本判断不到,因为已经判断了containskey
        /*if(node==null){
            return null;
        }*/

        //递归
        if(key.compareTo(node.key)<0){
            node.left = remove(node.left,key);
            return node;
        }else if(key.compareTo(node.key)>0){
            node.right = remove(node.right,key);
            return node;
        }else{
            //已找到要删除的元素
            //1 如果只有左子节点或只有右子节点,则直接将子节点替换
            if(node.left==null){
                return node.right;
            }else if(node.right==null){
                return node.left;
            }else{
                //2 如果有左子节点和右子节点,则寻找前驱或后继 对当前节点替换掉
                Node nodeMain = findMin(node.right);
                nodeMain.right = removMin(node.right);//这块一箭双雕,既把后继节点问题解决了,也把后继删除了
                nodeMain.left = node.left;
                node.left = node.right = null;
                return node;
            }
        }
    }

    private Node findMin(Node node){
        //1     终止条件
        if(node.left==null){
            return node;
        }

        //2     递归
        return findMin(node.left);
    }

    private Node removMin(Node node){
        //终止条件
        if(node.left==null){
            Node rightNode = node.right;
            node.right = null;
            return rightNode;
        }

        //递归
        node.left = removMin(node.left);
        return node;
    }

    /**
     * 删除任意元素 若删除元素节点下只有一个节点直接接上即可,若有两个节点,则找前驱或后继,本节找前驱
     * @author weidoudou
     * @date 2023/1/1 11:52
     * @param key 请添加参数描述
     * @return V
     **/
    public V remove(K key) {
        Node node = containsKey(key,root);
        if(node == null){
            throw new IllegalArgumentException("要修改的值不存在");
        }
        size--;
        return remove(root, key).value;
    }

    //1     校验二分搜索树(中序遍历参考之前的中序遍历一节)
    public boolean judgeBST(){
        List<K> list = new ArrayList<>();
        inOrder(root,list);
        for(int i=1;i<list.size();i++){
            if(list.get(i-1).compareTo(list.get(i))>0){
                return false;
            }
        }
        return true;
    }

    private void inOrder(Node node, List<K> list){
        if(node==null){
            return;
        }
        inOrder(node.left,list);
        list.add(node.key);
        inOrder(node.right,list);
    }


    //2     校验平衡二叉树
    public boolean judgeBalance(){
        return judgeBalance(root);
    }

    private boolean judgeBalance(Node node){
        if(node == null){
            return true;
        }
        int balanceFactor = getBalanceFactor(node);
        if(Math.abs(balanceFactor)>1){
            return false;
        }
        return judgeBalance(node.left)&&judgeBalance(node.right);
    }




    public static void main(String[] args) {
        System.out.println("Pride and Prejudice");
        ArrayList<String> words = new ArrayList<>();

        if(FileOperation.readFile("pride-and-prejudice.txt",words)){
            System.out.println("Total words: "+words.size());
            AVLTree<String,Integer> avlTree = new AVLTree<>();
            for(String word:words){
                if(avlTree.contains(word)){
                    avlTree.set(word,avlTree.get(word)+1);
                }else{
                    avlTree.add(word,1);
                }
            }
            System.out.println("Total different words:"+avlTree.getSize());
            System.out.println("judge BST:"+avlTree.judgeBST());
            System.out.println("judge Balance:"+avlTree.judgeBalance());
        }
    }


}

 

  • 对照类BST:
package com.company;

import java.util.LinkedList;
import java.util.Queue;
import java.util.Stack;

public class BST<K extends Comparable<K>,V> {


    //1     定义Node
    class Node{
        private K key;
        private V value;
        private Node left,right;

        public Node(K key, V value){
            this.key = key;
            this.value = value;
            this.left = null;
            this.right = null;
        }

        @Override
        public String toString() {
            final StringBuffer sb = new StringBuffer("Node{");
            sb.append("key=").append(key);
            sb.append(", value=").append(value);
            sb.append('}');
            return sb.toString();
        }
    }

    //2     定义属性
    private int size;
    private Node root;

    /**
     * 无参构造函数
     * @author weidoudou
     * @date 2023/1/1 11:09
     * @return null
     **/
    public BST(){
        this.size = 0;
        this.root = null;
    }

    public boolean isEmpty() {
        return size==0?true:false;
    }

    public int getSize() {
        return size;
    }

    //3     定义包含函数
    private Node containsKey(K key,Node node){
        //结束条件
        if(null==node){
            return null;
        }

        //循环条件
        if(key.compareTo(node.key)<0){
            return containsKey(key,node.left);
        }else if(key.compareTo(node.key)>0){
            return containsKey(key, node.right);
        }else{//key.compareTo(node.key)=0 其实这个也是结束条件
            return node;
        }
    }

    public boolean contains(K key) {
        return containsKey(key,root)==null?false:true;
    }

    public V get(K key) {
        Node node = containsKey(key,root);
        if(null!=node){
            return node.value;
        }
        return null;
    }


    //3     递归,添加元素
    public void add(K key,V value,Node root){
        //3.1   终止条件
        //3.1.1 要插入的元素和二叉树原有节点相同,这个不用判断,因为已经调了containsKey方法判断了
        /*if(key.equals(root.e)){
            return;
        }*/

        //3.1.2 最终插入左孩子
        if(key.compareTo(root.key)<0 && root.left==null){
            root.left = new Node(key,value);
            size++;
            return;
        }

        //3.1.2 最终插入右孩子
        if(key.compareTo(root.key)>0 && root.right == null){
            root.right = new Node(key,value);
            size++;
            return;
        }

        //3.2   递归
        //3.2.1 递归左孩子
        if(key.compareTo(root.key)<0){
            add(key,value,root.left);
        }

        //3.2.2 递归右孩子
        if(key.compareTo(root.key)>0){
            add(key,value,root.right);
        }
    }

    public void add(K key, V value) {
        Node node = containsKey(key,root);
        //未找到,插值
        if(node==null){
            //2.1   考虑特殊情况,如果是第一次调用,root为null
            if(root==null){
                root = new Node(key,value);
                size++;
            }else{
                //2.2   添加递归方法
                add(key,value,root);
            }
        }else{
            node.value = value;
        }
        //找到后,更新值
    }

    public void set(K key, V value) {
        Node node = containsKey(key,root);
        if(node == null){
            throw new IllegalArgumentException("要修改的值不存在");
        }
        node.value = value;
    }

    private Node remove(Node node,K key){
        //终止条件1 基本判断不到,因为已经判断了containskey
        /*if(node==null){
            return null;
        }*/

        //递归
        if(key.compareTo(node.key)<0){
            node.left = remove(node.left,key);
            return node;
        }else if(key.compareTo(node.key)>0){
            node.right = remove(node.right,key);
            return node;
        }else{
            //已找到要删除的元素
            //1 如果只有左子节点或只有右子节点,则直接将子节点替换
            if(node.left==null){
                return node.right;
            }else if(node.right==null){
                return node.left;
            }else{
                //2 如果有左子节点和右子节点,则寻找前驱或后继 对当前节点替换掉
                Node nodeMain = findMin(node.right);
                nodeMain.right = removMin(node.right);//这块一箭双雕,既把后继节点问题解决了,也把后继删除了
                nodeMain.left = node.left;
                node.left = node.right = null;
                return node;
            }
        }
    }

    private Node findMin(Node node){
        //1     终止条件
        if(node.left==null){
            return node;
        }

        //2     递归
        return findMin(node.left);
    }

    private Node removMin(Node node){
        //终止条件
        if(node.left==null){
            Node rightNode = node.right;
            node.right = null;
            return rightNode;
        }

        //递归
        node.left = removMin(node.left);
        return node;
    }

    /**
     * 删除任意元素 若删除元素节点下只有一个节点直接接上即可,若有两个节点,则找前驱或后继,本节找前驱
     * @author weidoudou
     * @date 2023/1/1 11:52
     * @param key 请添加参数描述
     * @return V
     **/
    public V remove(K key) {
        Node node = containsKey(key,root);
        if(node == null){
            throw new IllegalArgumentException("要修改的值不存在");
        }
        size--;
        return remove(root, key).value;
    }


}

 

  • 测试类:
package com.company;

import java.util.ArrayList;
import java.util.Collections;
import java.util.stream.Collectors;

public class Main {


    public static void main(String[] args) {

        //1     先把字数全部放进list
        ArrayList<String> list1 = new ArrayList<>();
        if(FileOperation.readFile("pride-and-prejudice.txt",list1)){
            Collections.sort(list1);
            BST<String,Integer>  bst = new BST();

            //2.1       测试BST
            long startTime1 = System.nanoTime();
            for(int i = 0;i<list1.size();i++){
                if(bst.contains(list1.get(i))){
                    bst.set(list1.get(i),bst.get(list1.get(i))+1);
                }else{
                    bst.add(list1.get(i),1);
                }
            }
            for(String key: list1){
                bst.contains(key);
            }
            long endTime1 = System.nanoTime();
            System.out.println("BST USE TIME ="+(endTime1-startTime1)/100000000.0);


            //2.2   测试AVLTree
            long startTime2 = System.nanoTime();
            AVLTree<String,Integer> avlTree = new AVLTree<>();
            for(int i = 0;i<list1.size();i++){
                if(avlTree.contains(list1.get(i))){
                    avlTree.set(list1.get(i),avlTree.get(list1.get(i))+1);
                }else{
                    avlTree.add(list1.get(i),1);
                }
            }

            for(String key: list1){
                avlTree.contains(key);
            }
            long endTime2 = System.nanoTime();
            System.out.println("AVLTREE USE TIME ="+(endTime2-startTime2)/100000000.0);

        }

    }



}

 

  • 测试结果:
BST USE TIME =103.097125
AVLTREE USE TIME =0.434623

Process finished with exit code 0