KONGSBERG MRU-M-SU1

发布时间 2023-06-08 09:18:25作者: 工控魏
W;①  ⑧  0  ③  0  ① 7   7  7 ⑤  ⑨
KONGSBERG  MRU-M-SU1 MRU-M-MB3 RMP201-8  MRU2  RCU502 DPS112  RMP201-8 KONGSBERG  MRU-M-SU1 MRU-M-MB3 RMP201-8  MRU2  RCU502 DPS112  RMP201-8  KONGSBERG 可以方便地实施简单的安全任务直至扩展的面向安全的机器人解决方案。安全控制器已有 30 个故障安全输入或输出,并可通过 EtherCAT (FSoE) 实现简单的扩展性。  具有大量预定义功能的图形化编程工具可以轻松地对安全传感器和执行器乃至整个机器人进行项目规划。输入和输出可以通过拖放方便地链接到安全逻辑。  用于复杂解决方案的高性能伺服控制器  

 

ServoOne 产品系列的模块化设计确保其始终以最佳方式集成到您的机器过程中。 MRU-M-SU1 MRU-M-MB3 RMP201-8  MRU2  RCU502 DPS112  RMP201-8  KONGSBERG  MRU-M-SU1 MRU-M-MB3 RMP201-8  MRU2 一个微调的单轴系统和一个节能的多轴系统涵盖了广泛性能范围内的所有应用。无论是使用与中央多轴机器控制器的高速现场总线通信,还是在驱动控制器中使用分布式运动控制智能,ServoOne 都能胜任。您的优势一目了然  额定电流:4 - 450 A  过载系数:高达 300 %  冷却方式:风冷高达 170 A / 液冷 16 至 450 A  可选的集成制动电阻器:风冷高达 32 A / 液冷高达 450  为您的机器提供强大的控制工程  高达 16 kHz 的采样频率可实现最佳电机控制  用于精确路径精度的预测前馈控制结构  用于抑制机械振动的滤波器  使用获得专利的 GPOC 方法校正编码器错误  补偿电机转矩脉动和摩擦转矩  机械主轴误差的修正  无绝对值编码器同步电机的自动换相发现  同步电机的无传感器控制  功能包  ServoOne 产品系列的控制器可以与专门定制的功能包一起订购。然后,它们会配备扩展软件,如果适用,还会配备硬件。iPLC 功能包可以与其他功能包结合使用。  该产品系列可以灵活地集成到控制和自动化工程中。  ServoOne 提供范围广泛的不同现场总线系统。  基于实时以太网的通信接口,例如:  EtherCAT、Sercos III、PROFINET IRT 或 PowerLink  Sercos II + III 作为机床中已建立的通信接口  久经考验的现场总线接口,例如基于 DS301/DSP402 配置文件的 CANopen 和 PROFIBUS DPV1 完善了 ServoOne 现场总线产品组合。  液压功能包  伺服液压系统(“伺服泵”)结合了电动伺服系统的优点和液压驱动的功率密度。泵电机的伺服控制提供液压状态变量(压力、流量、气缸位置,如果适用)的闭环控制。  iPLC 功能包 - IEC 61131 编程  IEC 61131 可编程 iPLC 与驱动控制器共享 ServoOne 微控制器平台。这允许以最佳方式访问所有系统和控制参数以及接口。  小伺服器  性能范围较低端的高性能伺服控制器 RCU502 DPS112  RMP201-8  KONGSBERG  MRU-M-SU1 MRU-M-MB3 RMP201-8  MRU2  RCU502 DPS112  RMP201-8 KONGSBERG  MRU-M-SU1 MRU-M-MB3 RMP201-8  MRU2  RCU502 DPS112  RMP201-8  KONGSBERG  MRU-M-SU1 MRU-M-MB3 RMP201-8  MRU2  RCU502 DPS112  RMP201-8 KONGSBERG 

ServoOne Junior 伺服控制器针对性能范围的低端进行了优化,具有 ServoOne 产品系列的所有技术特性。ServoOne 系列伺服控制器的完整功能兼容性和处理始终得到保证。  ServoOne Junior 可轻松弥合成本优化、最小尺寸和最大功能之间的差距。高速现场总线系统和最新编码器接口的集成保证了面向未来的灵活性。广泛的运动控制功能提供了广泛的可能解决方案。  3 - 8 A 额定电流,1/3 x 230 V AC 2 - 16 A 额定电流,3 x 400 - 480 V AC  过载能力高达 300 % HF功能包(高频)  HF 功能包非常适合主轴和涡轮机。其主要特性包括 1600 Hz 的最大旋转场频率、高达 16 kHz 的可选开关频率和经过调整的控制结构。
 CPU出现于大规模集成电路时代,处理器架构设计的迭代更新以及集成电路工艺的不断提升促使其不断发展完善。从最初专用于数学计算到广泛应用于通用计算,从4位到8位、16位、32位处理器,最后到64位处理器,从各厂商互不兼容到不同指令集架构规范的出现,CPU 自诞生以来一直在飞速发展。 [1] CPU发展已经有40多年的历史了。我们通常将其分成六个阶段。 [3] (1)第一阶段(1971年-1973年)。这是4位和8位低档微处理器时代,代表产品是Intel 4004处理器。 [3] 1971年,Intel生产的4004微处理器将运算器和控制器集成在一个芯片上,标志着CPU的诞生; 1978年,8086处理器的出现奠定了X86指令集架构, 随后8086系列处理器被广泛应用于个人计算机终端、高性能服务器以及云服务器中。 [1] (2)第二阶段(1974年-1977年)。这是8位中高档微处理器时代,代表产品是Intel 8080。此时指令系统已经比较完善了。 [3] (3)第三阶段(1978年-1984年)。这是16位微处理器的时代,代表产品是Intel 8086。相对而言已经比较成熟了。 [3] (4)第四阶段(1985年-1992年)。这是32位微处理器时代,代表产品是Intel 80386。已经可以胜任多任务、多用户的作业。 [3] 1989 年发布的80486处理器实现了5级标量流水线,标志着CPU的初步成熟,也标志着传统处理器发展阶段的结束。 [1] (5)第五阶段(1993年-2005年)。这是奔腾系列微处理器的时代。 [3] 1995 年11 月,Intel发布了Pentium处理器,该处理器首次采用超标量指令流水结构,

MRU-M-SU1 MRU-M-MB3 RMP201-8  MRU2  RCU502 DPS112  RMP201-8 KONGSBERG  MRU-M-SU1 MRU-M-MB3 RMP201-8  MRU2  RCU502 DPS112  RMP201-8 KONGSBERG  MRU-M-SU1 MRU-M-MB3 RMP201-8  MRU2  RCU502 DPS112  RMP201-8 KONGSBERG  MRU-M-SU1 MRU-M-MB3 RMP201-8  MRU2  RCU502 DPS112  RMP201-8 KONGSBERG  MRU-M-SU1 MRU-M-MB3 RMP201-8  MRU2  RCU502 DPS112  RMP201-8