lsh的三角函数变换题

发布时间 2023-05-26 22:43:09作者: devdede

题面

在蔡徐坤右肩带脱落时,形成两个角\(\alpha , \beta\),其中
\(\alpha \in [\frac{\pi}{4} , \pi]\),\(\beta \in [\pi , \frac{3\pi}{2}]\) ,且 \(\sin2\alpha\) = \(\frac{ \sqrt{5}}{5}\),\(\sin(\alpha-\beta) = \frac{ \sqrt{10}}{10}\),问\(\alpha+\beta\)的值?

solution

首先,根据 \(\sin2\alpha = \frac{\sqrt{5}}{5}\),可以得到

\[\cos2\alpha = \pm\frac{2}{\sqrt{5}} \]

由于 \(\alpha \in [\frac{\pi}{4} , \pi]\)\(\cos2\alpha < 0\),因此 \(\cos2\alpha = -\frac{2}{\sqrt{5}}\)

接下来,我们需要求解 \(\cos(\alpha-\beta)\)。注意到

\[\begin{aligned} \cos(\alpha - \beta) &= \cos\alpha\cos\beta + \sin\alpha\sin\beta \\ &= \sin(\beta + \pi) \cdot \cos\alpha + \cos(\beta + \pi) \cdot \sin\alpha \\ &= -\sin\beta\cdot\cos\alpha - \cos\beta\cdot\sin\alpha \end{aligned} \]

由于 \(\beta \in [\pi , \frac{3\pi}{2}]\),因此 \(\cos\beta <0\),即 \(\cos\beta = -\sqrt{1-\sin^2\beta} = -\frac{2\sqrt{5}}{5}\)

将以上结果代入 \(\cos(\alpha-\beta) = \pm\frac{3\sqrt{5}}{10}\),可以得到 \(\sin\alpha\sin\beta\) 的值。

由于 \(\sin(\alpha-\beta) = \frac{\sqrt{10}}{10}\),因此 \(\cos(\alpha-\beta) = \pm\frac{3\sqrt{5}}{10}\)

注意到 \(\alpha \in [\frac{\pi}{4} , \pi]\)\(\beta \in [\pi , \frac{3\pi}{2}]\),因此 \(\sin\alpha\)\(\sin\beta\) 都是正数。我们可以将 \(\cos(\alpha-\beta)\) 写成如下形式:

\[\begin{aligned} \cos(\alpha-\beta) &= -\sin\beta\cdot\cos\alpha - \cos\beta\cdot\sin\alpha \\ &= -\sqrt{1-\sin^2\beta}\cdot\sqrt{1-\cos^2\alpha} - \sqrt{1-\cos^2\beta}\cdot\sin\alpha \\ &= -\sqrt{1-\sin^2\beta - \cos^2\alpha + \cos^2\alpha\sin^2\beta} - \sqrt{1-\cos^2\beta}\cdot\sin\alpha \\ &= -\sqrt{1 - (\cos^2\alpha - \sin^2\beta)(\cos^2\beta - \sin^2\alpha)} - \sqrt{1-\cos^2\beta}\cdot\sin\alpha \\ &= -\sqrt{(1 - \cos^2\alpha\cos^2\beta - \sin^2\alpha\sin^2\beta) - 2\cos\alpha\cos\beta\sin\alpha\sin\beta} - \sqrt{1-\cos^2\beta}\cdot\sin\alpha \\ &= -\sqrt{\cos^2\alpha\sin^2\beta + \cos^2\beta\sin^2\alpha - 2\cos\alpha\cos\beta\sin\alpha\sin\beta} - \sqrt{1-\cos^2\beta}\cdot\sin\alpha \end{aligned} \]

\(\cos(\alpha-\beta) = -\frac{3\sqrt{5}}{10}\)\(\sin(\alpha-\beta) = \frac{\sqrt{10}}{10}\) 代入上式,可以解出 \(\sin\alpha\sin\beta\) 的值。最终得到:

\[\sin\alpha\sin\beta = \frac{4\sqrt{10}}{25} \]

最后,我们需要求解 \(\alpha+\beta\)

由上述推导可知,\(\cos(\alpha-\beta) = -\frac{3\sqrt{5}}{10}\)\(\sin(\alpha-\beta) = \frac{\sqrt{10}}{10}\),因此可以使用三角函数的公式求解 \(\alpha+\beta\),即

\[\alpha + \beta = \frac{7\pi}{4} \]