机器学习——卷积神经网络

发布时间 2023-11-04 15:21:25作者: Yohoc

   对于表格数据(其中行对应样本,列对应特征),我们寻找的模式可能涉及特征之间的交互,但是我们不能预先假设任何与特征交互相关的先验结构。 此时,多层感知机可能是最好的选择,然而对于高维感知数据,这种缺少结构的网络可能会变得不实用。原因如下:

  当特征数非常高维时,全连接网络的参数会变得极大,导致计算成本大幅上升,训练和预测变慢;需要大量数据来防止过拟合;对特征交互的学习也会受限,难以捕捉高阶交互;对部分交互的学习会被稀释。例如,在之前猫狗分类的例子中:假设我们有一个足够充分的照片数据集,数据集中是拥有标注的照片,每张照片具有百万级像素,这意味着网络的每次输入都有一百万个维度。 即使将隐藏层维度降低到1000,这个全连接层也将有个参数。 想要训练这个模型将不可实现,因为需要有大量的GPU、分布式优化训练的经验和超乎常人的耐心。然而,如今人类和机器都能很好地区分猫和狗:这是因为图像中本就拥有丰富的结构,而这些结构可以被人类和机器学习模型使用。 卷积神经网络(convolutional neural networks,CNN)是机器学习利用自然图像中一些已知结构的创造性方法。

 

平移不变性和局部性

想象一下,假设我们想从一张图片中找到某个物体。 合理的假设是:无论哪种方法找到这个物体,都应该和物体的位置无关。 理想情况下,我们的系统应该能够利用常识:猪通常不在天上飞,飞机通常不在水里游泳。 但是,如果一只猪出现在图片顶部,我们还是应该认出它。 我们可以从儿童游戏”沃尔多在哪里”中得到灵感: 在这个游戏中包含了许多充斥着活动的混乱场景,而沃尔多通常潜伏在一些不太可能的位置,读者的目标就是找出他。 尽管沃尔多的装扮很有特点,但是在眼花缭乱的场景中找到他也如大海捞针。 然而沃尔多的样子并不取决于他潜藏的地方,因此我们可以使用一个“沃尔多检测器”扫描图像。 该检测器将图像分割成多个区域,并为每个区域包含沃尔多的可能性打分。 卷积神经网络正是将空间不变性(spatial invariance)的这一概念系统化,从而基于这个模型使用较少的参数来学习有用的表示。

 

现在,我们将上述想法总结一下,从而帮助我们设计适合于计算机视觉的神经网络架构。

 

  1. 平移不变性(translation invariance):不管检测对象出现在图像中的哪个位置,神经网络的前面几层应该对相同的图像区域具有相似的反应,即为“平移不变性”。

  2. 局部性(locality):神经网络的前面几层应该只探索输入图像中的局部区域,而不过度在意图像中相隔较远区域的关系,这就是“局部性”原则。最终,可以聚合这些局部特征,以在整个图像级别进行预测。

 

数学表示

 

 

 

简而言之, (6.1.3)是一个卷积层(convolutional layer),而卷积神经网络是包含卷积层的一类特殊的神经网络。 在深度学习研究社区中,被称为卷积核(convolution kernel)或者滤波器(filter),亦或简单地称之为该卷积层的权重,通常该权重是可学习的参数。 当图像处理的局部区域很小时,卷积神经网络与多层感知机的训练差异可能是巨大的:以前,多层感知机可能需要数十亿个参数来表示网络中的一层,而现在卷积神经网络通常只需要几百个参数,而且不需要改变输入或隐藏表示的维数。

参数大幅减少的代价是,我们的特征现在是平移不变的,并且当确定每个隐藏活性值时,每一层只包含局部的信息。 以上所有的权重学习都将依赖于归纳偏置。当这种偏置与现实相符时,我们就能得到样本有效的模型,并且这些模型能很好地泛化到未知数据中。 但如果这偏置与现实不符时,比如当图像不满足平移不变时,我们的模型可能难以拟合我们的训练数据。

 

通道

 

 

总结

  • 图像的平移不变性使我们以相同的方式处理局部图像,而不在乎它的位置。

  • 局部性意味着计算相应的隐藏表示只需一小部分局部图像像素。

  • 在图像处理中,卷积层通常比全连接层需要更少的参数,但依旧获得高效用的模型。

  • 卷积神经网络(CNN)是一类特殊的神经网络,它可以包含多个卷积层。

  • 多个输入和输出通道使模型在每个空间位置可以获取图像的多方面特征(多通道)