R语言可视化探索BRFSS数据并逻辑回归Logistic回归预测中风|附代码数据

发布时间 2023-03-28 23:47:23作者: 拓端tecdat

原文链接:http://tecdat.cn/?p=9195

最近我们被客户要求撰写关于逻辑回归的研究报告,包括一些图形和统计输出。

行为风险因素监视系统(BRFSS)是美国的年度电话调查。BRFSS旨在识别成年人口中的危险因素并报告新兴趋势

加载包

library(ggplot2)

载入资料

load("brfss2013.RData")

第1部分:关于数据

例如,询问受访者饮食和每周的体育锻炼,艾滋病毒/艾滋病状况,可能的烟草使用,免疫接种,健康状况,健康天数-与健康相关的生活质量,获得医疗保健,睡眠不足,高血压意识,胆固醇意识,慢性健康状况,饮酒,水果和蔬菜消费,关节炎负担和安全带使用。

数据采集:

数据收集过程在brfss_codebook中进行了说明。通过进行座机电话调查和基于蜂窝电话的调查,从美国所有50个州,哥伦比亚特区,波多黎各,关岛和美属萨摩亚,密克罗尼西亚联邦和帕劳收集了数据。固定电话样本已使用了不成比例的分层抽样(DSS),并且随机选择了蜂窝电话受访者,每个受访者具有相同的选择概率。我们正在处理的数据集包含330个变量,2013年共进行491、775次观测。缺失值用“ NA”表示。

推广性:

样本数据应使我们能够推广到感兴趣的人群。它是对491,775名18岁以上美国成年人的调查。它基于大量分层的随机样本。潜在偏见与无回应,不完整的访谈,价值观缺失和便利偏见有关。

因果关系:

BRFSS是一项观察研究,只能建立变量之间的相关性/关联性,因此无法建立因果关系。

第2部分:研究问题

研究问题1:

在过去30天内,身心健康状况不佳的天数分布是否因性别而异?

研究问题2:

受访者接受采访的月份与受访者自我报告的健康感知之间是否存在关联?

研究问题3:

收入和医疗保险之间有关联吗?

研究问题4:

吸烟,饮酒,胆固醇,血压,体重和中风之间是否有任何关系?最终,我想看看是否可以通过上述变量预测中风。

第3部分:探索性数据分析

研究问题1:

ggplot(aes(x=physhlth, fill=sex), data = brfss2013[ ! is.na(brfss2013 $ sex), ])  + 
  geom_histogram(bins=30, position = position_dodge())  +  ggtitle('Number of Days Physical Health not Good in the Past 30 Days')

图片

 


点击标题查阅往期内容

图片

R语言逻辑回归(Logistic Regression)、回归决策树、随机森林信用卡违约分析信贷数据集

图片

左右滑动查看更多

图片

01

图片

02

图片

03

图片

04

图片

ggplot(aes(x=menthlth, fill=sex), data=brfss2013[ ! is.na(brfss2013 $ sex), ])  + 
  geom_histogram(bins=30, position = position_dodge())  +  ggtitle('Number of Days Mental Health not Good in the Past 30 Days')

图片

 

ggplot(aes(x=poorhlth, fill=sex), data=brfss2013[ ! is.na(brfss2013 $ sex), ])  + 
  geom_histogram(bins=30, position = position_dodge())  +  ggtitle('Number of Days with Poor Physical Or Mental Health in the Past 30 Days')

图片

 

summary(brfss2013 $ sex)
##  Male  Female   NA's 
##201313 290455      7

以上三个数字显示了过去30天内男性和女性对身体,精神和健康状况不佳的天数做出反应的数据分布。我们可以看到,女性受访者比男性受访者要多得多。

研究问题2: 图片图片 

 

我试图找出人们在不同月份对健康状况的反应是否不同。例如,人们是否更有可能说自己在春季或夏季身体健康?

研究问题3: 图片 

 

一般而言,高收入受访者比低收入受访者更有可能获得医疗保健。

研究问题4:

为了回答这个问题,我将使用以下变量:

  • smoke100:抽至少100支香烟
  • avedrnk2:过去30天每天平均含酒精饮料
  • bphigh4:曾经血压过高
  • tellhi2:高胆固醇血症
  • weight2:报告的磅数
  • cvdstrk3:曾经被诊断为中风

首先,将上述变量转换为数字,并查看这些数字变量之间的相关性。


corr.matrix  <- cor(selected_brfss)
corrplot(corr.matrix, main="\n\nCorrelation Plot of Smoke, Alcohol, Blood pressure, Cholesterol, and Weight", method="number")

图片

 

似乎没有任何两个数字变量具有很强的相关性。

Logistic回归预测中风

将答案“是,但女性仅在怀孕期间告知”和“告诉临界点或高血压前”回答为“是”。

将“ NA”值替换为“否”。

stroke $ bphigh4  <- replace(stroke $ bphigh4, which(is.na(stroke $ bphigh4)), "No")
stroke $ toldhi2  <- replace(stroke $ toldhi2, which(is.na(stroke $ toldhi2)), "No")
stroke $ cvdstrk3  <- replace(stroke $ cvdstrk3, which(is.na(stroke $ cvdstrk3)), "No")
stroke $ smoke100  <- replace(stroke $ smoke100, which(is.na(stroke $ smoke100)), 'No')

平均替换“ NA”值。

mean(stroke $ avedrnk2,na.rm = T)
##[1] 2.209905
stroke $ avedrnk2  <- replace(stroke $ avedrnk2, which(is.na(stroke $ avedrnk2)), 2)

看一下将用于建模的数据。

head(stroke)
summary(stroke)
##   bphigh4 toldhi2 cvdstrk3 weight2 smoke100 avedrnk2
##1     Yes     Yes       No     154      Yes        2
##2      No      No       No      30       No        2
##3      No      No       No      63      Yes        4
##4      No     Yes       No      31       No        2
##5     Yes      No       No     169      Yes        2
##6     Yes     Yes       No     128       No        2
##  bphigh4      toldhi2      cvdstrk3        weight2       smoke100    
## No :284107   Yes:183501   Yes: 20391   Min.   :  1.00   Yes:215201  
## Yes:207668   No :308274   No :471384   1st Qu.: 43.00   No :276574  
##                                        Median : 73.00               
##                                        Mean   : 80.22               
##                                        3rd Qu.:103.00               
##                                        Max.   :570.00               
##    avedrnk2     
## Min.   : 1.000  
## 1st Qu.: 2.000  
## Median : 2.000  
## Mean   : 2.099  
## 3rd Qu.: 2.000  
## Max.   :76.000

二进制结果。
在整理和清理数据之后,现在我们可以拟合模型。

Logistic回归模型拟合


summary(model)
##Call:
##glm(formula = cvdstrk3 ~ ., family = binomial(link = "logit"), 
##    data = train)

##Deviance Residuals: 
##    Min       1Q   Median       3Q      Max  
##-0.5057  -0.3672  -0.2109  -0.1630   3.2363  

##Coefficients:
##              Estimate Std. Error  z value Pr(>|z|)    
##(Intercept) -3.2690106  0.0268240 -121.869  < 2e-16 ***
##bphigh4Yes   1.3051850  0.0193447   67.470  < 2e-16 ***
##toldhi2No   -0.5678048  0.0171500  -33.108  < 2e-16 ***
##weight2     -0.0009628  0.0001487   -6.476 9.41e-11 ***
##smoke100No  -0.3990598  0.0163896  -24.348  < 2e-16 ***
##avedrnk2    -0.0274511  0.0065099   -4.217 2.48e-05 ***
##---
##Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##(Dispersion parameter for binomial family taken to be 1)

##    Null deviance: 136364  on 389999  degrees of freedom
##Residual deviance: 126648  on 389994  degrees of freedom
##AIC: 126660

##Number of Fisher Scoring iterations: 6

解释我的逻辑回归模型的结果:

所有变量均具有统计学意义。

  • 所有其他变量都相等,被告知血压升高,更可能发生中风。
  • 预测变量的负系数-tellhi2No表示,所有其他变量相等,没有被告知血液中胆固醇水平较高,则发生中风的可能性较小。
  • 每单位重量改变,具有冲程(相对于无冲程)的对数几率降低0.00096。
  • 至少抽100支香烟不抽烟,中风的可能性较小。
  • 在过去30天内,每天平均含酒精饮料增加1个单位,中风的对数几率降低0.027。
anova(model, test="Chisq")
##Analysis of Deviance Table

##Model: binomial, link: logit

##Response: cvdstrk3

##Terms added sequentially (first to last)


##         Df Deviance Resid. Df Resid. Dev  Pr(>Chi)    
##NULL                    389999     136364              
##bphigh4   1   7848.6    389998     128516 < 2.2e-16 ***
##toldhi2   1   1230.1    389997     127285 < 2.2e-16 ***
##weight2   1     33.2    389996     127252 8.453e-09 ***
##smoke100  1    584.5    389995     126668 < 2.2e-16 ***
##avedrnk2  1     19.9    389994     126648 7.958e-06 ***
##---
##Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

分析偏差表,可以看到一次添加每个变量时偏差的下降。添加bphigh4,tellhi2,smoke100会大大减少残留偏差。尽管其他变量weight2和avedrnk2都具有较低的p值,但它们似乎对模型的改进较少。

评估模型的预测能力``

##[1] "Accuracy 0.961296978629329

测试装置上的0.96精度是非常好的结果。

绘制ROC曲线并计算AUC(曲线下的面积)


auc

图片

##[1] 0.7226642

最后一点,当我们分析健康状况监测数据时,我们必须意识到自我报告的患病率可能会有偏差,因为受访者可能不知道其风险状况。因此,为了获得更精确的估计,研究人员正在使用实验室测试以及自我报告的数据。

图片

图片

点击文末 “阅读原文”

获取全文完整代码数据资料。

本文选自《R语言可视化探索BRFSS数据并逻辑回归Logistic回归预测中风》。

点击标题查阅往期内容

PYTHON用户流失数据挖掘:建立逻辑回归、XGBOOST、随机森林、决策树、支持向量机、朴素贝叶斯和KMEANS聚类用户画像
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
R语言集成模型:提升树boosting、随机森林、约束最小二乘法加权平均模型融合分析时间序列数据
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化
R语言基于树的方法:决策树,随机森林,Bagging,增强树
R语言用逻辑回归、决策树和随机森林对信贷数据集进行分类预测
spss modeler用决策树神经网络预测ST的股票
R语言中使用线性模型、回归决策树自动组合特征因子水平
R语言中自编基尼系数的CART回归决策树的实现
R语言用rle,svm和rpart决策树进行时间序列预测
python在Scikit-learn中用决策树和随机森林预测NBA获胜者
python中使用scikit-learn和pandas决策树进行iris鸢尾花数据分类建模和交叉验证
R语言里的非线性模型:多项式回归、局部样条、平滑样条、 广义相加模型GAM分析
R语言用标准最小二乘OLS,广义相加模型GAM ,样条函数进行逻辑回归LOGISTIC分类
R语言ISLR工资数据进行多项式回归和样条回归分析
R语言中的多项式回归、局部回归、核平滑和平滑样条回归模型
R语言用泊松Poisson回归、GAM样条曲线模型预测骑自行车者的数量
R语言分位数回归、GAM样条曲线、指数平滑和SARIMA对电力负荷时间序列预测R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
如何用R语言在机器学习中建立集成模型?
R语言ARMA-EGARCH模型、集成预测算法对SPX实际波动率进行预测在python 深度学习Keras中计算神经网络集成模型R语言ARIMA集成模型预测时间序列分析R语言基于Bagging分类的逻辑回归(Logistic Regression)、决策树、森林分析心脏病患者
R语言基于树的方法:决策树,随机森林,Bagging,增强树
R语言基于Bootstrap的线性回归预测置信区间估计方法
R语言使用bootstrap和增量法计算广义线性模型(GLM)预测置信区间
R语言样条曲线、决策树、Adaboost、梯度提升(GBM)算法进行回归、分类和动态可视化
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
R语言随机森林RandomForest、逻辑回归Logisitc预测心脏病数据和可视化分析
R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化
Matlab建立SVM,KNN和朴素贝叶斯模型分类绘制ROC曲线
matlab使用分位数随机森林(QRF)回归树检测异常值