TCP四次挥手TIME_WAIT过多分析及优化

发布时间 2023-04-25 16:36:33作者: IT随笔

TCP连接客户端和服务端双方都可以主动断开,通常先关闭连接的一方称为主动方,后关闭连接的一方称为被动方。

1、TIME_WAIT状态原理

通信双方建立TCP连接后,主动关闭连接的一方就会进入TIME_WAIT状态。

客户端主动关闭连接时,会发送最后一个ack后,然后会进入TIME_WAIT状态,再停留2个MSL时间(后有MSL的解释),进入CLOSED状态。

 

2、TIME_WAIT状态存在的理由

TCP/IP协议就是这样设计的,是不可避免的。主要有两个原因:

2.1 可靠地实现TCP全双工连接的终止

TCP协议在关闭连接的四次握手过程中,最终的ACK是由主动关闭连接的一端(后面统称A端)发出的,如果这个ACK丢失,对方(后面统称B端)将重发出最终的FIN,因此A端必须维护状态信息(TIME_WAIT)允许它重发最终的ACK。如果A端不维持TIME_WAIT状态,而是处于CLOSED 状态,那么A端将响应RST分节,B端收到后将此解释成一个错误(在Java中会抛出connection reset的SocketException)。

 

因而,要实现TCP全双工连接的正常终止,必须处理终止过程中四个分节任何一个分节的丢失情况,主动关闭连接的A端必须维持TIME_WAIT状态 。

 

2.2 允许老的重复分节在网络中消逝

TCP分节可能由于路由器异常而“迷途”,在迷途期间,TCP发送端可能因确认超时而重发这个分节,迷途的分节在路由器修复后也会被送到最终目的地,这个迟到的迷途分节到达时可能会引起问题。

 

在关闭“前一个连接”之后,马上又重新建立起一个相同的IP和端口之间的“新连接”,“前一个连接”的迷途重复分组在“前一个连接”终止后到达,而被“新连接”收到了。

 

为了避免这个情况,TCP协议不允许处于TIME_WAIT状态的连接启动一个新的可用连接,因为TIME_WAIT状态持续2MSL,就可以保证当成功建立一个新TCP连接的时候,来自旧连接重复分组已经在网络中消逝。

 

3、TIME_WAIT状态维持时间

MSL时间就是maximum segment lifetime(最大分节生命期),这是一个IP数据包能在互联网上生存的最长时间,超过这个时间IP数据包将在网络中消失 。

TIME_WAIT状态维持时间是两个MSL时间长度,也就是在1-4分钟。Windows操作系统就是4分钟。

 

 

4、TIME_WAIT 的危害

TIME_WAIT状态是TCP链接中正常产生的一个状态,但TIME_WAIT状态过多会存在以下的问题:

  • 在socket的TIME_WAIT状态结束之前,该socket所占用的本地端口号将一直无法释放。
  • 在高并发(每秒几万qps)并且采用短连接方式进行交互的系统中运行一段时间后,系统中就会存在大量的time_wait状态,严重影响服务器的处理能力,甚至耗尽可用的socket,停止服务。
  • 大量的time_wait状态也会系统一定的fd,内存和cpu资源,当然这个量一般比较小,并不是主要危害

 

5、如何优化TIME_WAIT过多的问题

总体来说,有两种方式:

5.1 方式一:调整系统内核参数

修改/etc/sysctl.conf文件,一般涉及下面的几个参数:

net.ipv4.tcp_syncookies = 1 表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;
net.ipv4.tcp_tw_reuse = 1 表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;
net.ipv4.tcp_tw_recycle = 1 表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。
net.ipv4.tcp_fin_timeout =  修改系统默认的 TIMEOUT 时间
net.ipv4.tcp_max_tw_buckets = 5000 表示系统同时保持TIME_WAIT套接字的最大数量,(默认是18000). 当TIME_WAIT连接数量达到给定的值时,所有的TIME_WAIT连接会被立刻清除,并打印警告信息。但这种粗暴的清理掉所有的连接,意味着有些连接并没有成功等待2MSL,就会造成通讯异常。一般不建议调整
net.ipv4.tcp_timestamps = 1(默认即为1)60s内同一源ip主机的socket connect请求中的timestamp必须是递增的。也就是说服务器打开了 tcp_tw_reccycle了,就会检查时间戳,如果对方发来的包的时间戳是乱跳的或者说时间戳是滞后的,那么服务器就会丢掉不回包,现在很多公司都用LVS做负载均衡,通常是前面一台LVS,后面多台后端服务器,这其实就是NAT,当请求到达LVS后,它修改地址数据后便转发给后端服务器,但不会修改时间戳数据,对于后端服务器来说,请求的源地址就是LVS的地址,加上端口会复用,所以从后端服务器的角度看,原本不同客户端的请求经过LVS的转发,就可能会被认为是同一个连接,加之不同客户端的时间可能不一致,所以就会出现时间戳错乱的现象,于是后面的数据包就被丢弃了,具体的表现通常是是客户端明明发送的SYN,但服务端就是不响应ACK,还可以通过下面命令来确认数据包不断被丢弃的现象,所以根据情况使用


其他优化:


net.ipv4.ip_local_port_range = 1024 65535 增加可用端口范围,让系统拥有的更多的端口来建立链接,这里有个问题需要注意,对于这个设置系统就会从1025~65535这个范围内随机分配端口来用于连接,如果我们服务的使用端口比如8080刚好在这个范围之内,在升级服务期间,可能会出现8080端口被其他随机分配的链接给占用掉,这个原因也是文章开头提到的端口被占用的另一个原因
net.ipv4.ip_local_reserved_ports = 7005,8001-8100 针对上面的问题,我们可以设置这个参数来告诉系统给我们预留哪些端口,不可以用于自动分配。

优化完内核参数后,可以执行sysctl -p命令,来激活上面的设置永久生效

 

5.2 方式二:调整短链接为长链接

从区别上可以看出,长连接比短连接从根本上减少了关闭连接的次数,减少了TIME_WAIT状态的产生数量,在高并发的系统中,这种方式的改动非常有效果,可以明显减少系统TIME_WAIT的数量。

 

 

6、总结

今天讲了 TCP 的四次挥手,重点对 TIME_WAIT 的产生、作用以及优化进行了讲解,需要记住以下三点:

  • TIME_WAIT 的引入是为了让 TCP 报文得以自然消失,同时为了让被动关闭方能够正常关闭;
  • 不要试图使用SO_LINGER设置套接字选项,跳过 TIME_WAIT;
  • 现代 Linux 系统引入了更安全可控的方案,可以帮助我们尽可能地复用 TIME_WAIT 状态的连接。