8.6.1 直线与直线垂直

发布时间 2023-05-06 09:18:22作者: 贵哥讲高中数学

\({\color{Red}{欢迎到学科网下载资料学习 }}\)
[ 【基础过关系列】高一数学同步精品讲义与分层练习(人教A版2019)]
(https://www.zxxk.com/docpack/2921718.html)
\({\color{Red}{ 跟贵哥学数学,so \quad easy!}}\)

必修第二册同步巩固,难度2颗星!

基础知识

异面直线所成的角

(1) 范围
\([0 ^{\circ},90 ^{\circ}]\);当两直线平行时,它们所成的角为\(0^{\circ}\).
 

(2) 作异面直线所成的角:平移法
如图,在空间任取一点\(O\),过\(O\)\(a' || a\)\(b' || b\),则\(a'\)\(b'\)所成的\(\theta\)角为异面直线\(a\)\(b\)所成的角.
特别地,找异面直线所成的角时,经常把一条异面直线平移到另一条异面直线的特殊点(如线段中点,端点等)上,形成异面直线所成的角.
image.png
 

直线与直线垂直

如果两条异面直线\(a\)\(b\)所成的角是直角,那么我们就说两条异面直线相互垂直,记作\(a\perp b\).

【例】 在正方体\(ABCD-A'B'C'D'\)中,求直线\(C'D\)与直线\(A'B\)\(A'A\)所成的角.
image.png
连接\(AB'\),交\(A'B\)\(O\)
\(\because AB' ||C'D\)\(\therefore\) 直线\(C'D\)与直线\(A'B\)所成的角是\(∠AOA'=90^{\circ}\),则\(C'D\perp A'B\)
直线\(C'D\)与直线\(A'A\)所成的角\(∠A' AO=45^{\circ}\).
image.png
 

基本方法

【题型1】 异面直线所成的角

【典题1】 如图,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,求下列异面直线所成的角.

  (1)\(AA_1\)\(BC\)\(\qquad \qquad\) (2)\(DD_1\)\(A_1 B\)\(\qquad \qquad\)(3)\(A_1 B\)\(AC\)
解析 (1)\(\because AD∥BC\)\(AA_1\perp AD\)
\(\therefore AA_1\perp BC\),即\(AA_1\)\(BC\)所成的角为\(90^{\circ}\)
(2)\(\because DD_1∥AA_1\)\(\therefore DD_1\)\(A_1 B\)所成的角就是\(AA_1\)\(A_1 B\)所成的角.
\(∠AA_1 B=45^{\circ}\)\(\therefore DD_1\)\(A_1 B\)所成的角为\(45^{\circ}\)
(3)连接\(D_1 C\)\(AD_1\),则\(A_1 B∥D_1 C\)
image.png
\(\therefore D_1 C\)\(AC\)所成的角就是\(A_1 B\)\(AC\)所成的角.
\(\because AC=CD_1=D_1 A\)
\(\therefore ∠ACD_1=60^{\circ}\)
\(\therefore A_1 B\)\(AC\)所成的角为\(60^{\circ}\)
点拨 求异面直线所成的角利用平移法.
 

【典题2】 如图,已知\(P\)是平行四边形\(ABCD\)所在平面外一点,\(M\)\(N\)分别是\(AB\)\(PC\)的中点.
  (1)求证:\(MN∥\)平面\(PAD\)
  (2)若\(MN=BC=4\)\(PA=4\sqrt{3}\),求异面直线\(PA\)\(MN\)所成的角的大小.
image.png
解析 (1)证明:取\(PD\)中点\(Q\),连\(AQ\)\(QN\),则\(AM∥QN\),且\(AM=QN\)
\(\therefore\)四边形\(AMNQ\)为平行四边形,
\(\therefore MN∥AQ\)
\(\because AQ\)在平面\(PAD\)内,\(MN\)不在平面\(PAD\)内,
\(\therefore MN∥\)\(PAD\)
(2)解:\(\because MN∥AQ\)
\(\therefore ∠PAQ\)即为异面直线\(PA\)\(MN\)所成的角,
\(\because MN=BC=4\)\(PA=4\sqrt{3}\)
\(\therefore AQ=4\),根据余弦定理可知\(\cos ∠AQD+\cos ∠AQP=0\)
\(\dfrac{16+x^2-48}{8 x}+\dfrac{16+x^2-16}{8 x}=0\),解得\(x=4\)
在三角形\(AQP\)中,\(AQ=PQ=4\)\(AP=4\sqrt{3}\)
\(\therefore \cos \angle P A Q=\dfrac{48+16-16}{2 \times 4 \times 4 \sqrt{3}}=\dfrac{\sqrt{3}}{2}\),即\(∠PAQ=30^{\circ}\)
\(\therefore\)异面直线\(PA\)\(MN\)所成的角的大小为\(30^{\circ}\).
点拨
1.要求异面直线\(PA\)\(MN\)所成的角,需平移其中一条线\(MN\)\(AQ\)与另一条\(PA\)相交,把所成的角\(∠PAQ\)找到;有时候可以要同时平移两条异面直线;
2.利用平移法找到异面直线所成角后,找含该角的三角形,再解三角形便可(常用正弦定理,余弦定理等).
 

【巩固练习】

1.如图,空间四边形\(ABCD\)的对角线\(AC=8\)\(BD=6\)\(M\)\(N\)分别为\(AB\)\(CD\)的中点,并且异面直线\(AC\)\(BD\)所成的角为\(90 ^{\circ}\),则 \(MN=\)(  )
image.png
 A. \(3\) \(\qquad \qquad \qquad \qquad\) B.\(4\) \(\qquad \qquad \qquad \qquad\) C. \(5\) \(\qquad \qquad \qquad \qquad\) D.\(6\)
 

2.四面体\(ABCD\)中,\(AB=BC=CD=DB=AC=2\)\(AD=3\),点\(M\)是边\(AB\)中点,则异面直线\(CM\)\(AD\)所成角的余弦值为(  )
 A. \(\dfrac{\sqrt{3}}{4}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{5}{8}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{\sqrt{3}}{8}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{5}{6}\)
 

3.在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\)\(F\)分别为棱\(AD\)\(A_1 B_1\)的中点,则异面直线\(EF\)\(CD_1\)夹角的余弦值为\(\underline{\quad \quad}\).
 

4.如图,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,棱长为\(2\)\(E\)\(BC\)的中点,则直线\(AE\)与直线\(BC_1\)所成角的余弦值为\(\underline{\quad \quad}\) .
image.png
 

5.如图,已知点\(P\)在圆柱\(OO_1\)的底面\(⊙O\)上, \(AA_1\perp AB\)\(BP\perp A_1 P\)\(AB\)\(A_1 B_1\)分别为\(⊙O\)\(⊙O_1\)的直径,且\(AB||A_1 B_1\). 若圆柱\(OO_1\)的体积\(V=12π\)\(OA=2\)\(∠AOP=120 ^{\circ}\),回答下列问题:
image.png
  (1) 求三棱锥\(A_1-APB\)的体积
  (2) 在线段\(AP\)上是否存在一点\(M\),使异面直线\(OM\)\(A_1 B\)所成的角的余弦值为\(\dfrac{2}{5}\)?若存在,请指出点\(M\)的位置,并证明;若不存在,请说明理由
 

参考答案

  1. 答案 \(C\)
    解析 \(AD\)的中点\(P\),连接\(PM\)\(PN\),则\(BD∥PM\)\(AC∥PN\)
    \(\therefore ∠MPN\)或其补角即异面直线\(AC\)\(BD\)所成的角,
    \(\therefore ∠MPN=90 ^{\circ}\)\(PN=\dfrac{1}{2} AC=4\)\(PM=\dfrac{1}{2} BD=3\)
    \(\therefore MN=5\)
    故选:\(C\)
    image.png

  2. 答案 \(\dfrac{\sqrt{3}}{4}\)
    解析 \(BD\)的中点\(N\),连接\(MN\)\(NC\)
    因为点\(M\)是边\(AB\)中点,
    \(MN∥AD\)
    则异面直线\(CM\)\(AD\)所成角的平面角为\(∠CMN\)(或其补角),
    \(AB=BC=CD=DB=AC=2\)\(AD=3\)
    则在\(△CMN\)中,\(MN=\dfrac{3}{2}\)\(CM=CN=\sqrt{3}\)
    由余弦定理可得 \(\cos \angle C M N=\dfrac{M N^2+C M^2-C N^2}{2 \times M N \times C M}=\dfrac{\sqrt{3}}{4}\).
    image.png

  3. 答案 \(\dfrac{\sqrt{3}}{6}\)
    解析 在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,
    如图,设棱\(BB_1\)的中点为\(G\),连接\(FG\)\(EG\)\(BE\)\(A_1 B\)
    image.png
    因为\(A_1 B∥FG\)\(CD_1∥A_1 B\),所以\(CD_1∥FG\)
    \(∠EFG\)为异面直线\(EF\)\(CD_1\)所成的角.
    设正方体\(ABCD-A_1 B_1 C_1 D_1\)的棱长为\(2\)
    \(FG=\sqrt{2}\)\(A_1 E=BE=\sqrt{5}\)\(EF=EG=\sqrt{6}\)
    在等腰三角形\(EFG\)中, \(\cos \angle E F G=\dfrac{\dfrac{F G}{2}}{E F}=\dfrac{\sqrt{3}}{6}\)
    故异面直线\(EF\)\(CD_1\)夹角的余弦值为 \(\dfrac{\sqrt{3}}{6}\)

  4. 答案 \(\dfrac{\sqrt{10}}{10}\)
    解析 如图,取\(CC_1\)的中点\(F\),连接\(EF\),则\(EF∥BC_1\),连接\(AF\)
    image.png
    \(∠AEF\)(或其补角)为直线\(AE\)与直线\(BC_1\)所成的角,
    \(\because\)正方体的棱长为\(2\)\(\therefore AE=\sqrt{5}\)\(EF=\sqrt{2}\)
    连接\(AC\),则 \(A F=\sqrt{8+1}=3\)
    \(\therefore\)\(△AEF\)中,由余弦定理得: \(\cos \angle A E F=\dfrac{A E^2+E F^2-A F^2}{2 A E \cdot E F}=\dfrac{5+2-9}{2 \times \sqrt{5} \times \sqrt{2}}=-\dfrac{\sqrt{10}}{10}\)
    \(\therefore\)直线\(AE\)与直线\(BC_1\)所成角的余弦值为\(\dfrac{\sqrt{10}}{10}\)

  5. 答案 (1) \(2\sqrt{3}\);(2) 点\(M\)\(AP\)的中点
    解析 (1) 由题意,得\(V=\pi \cdot O A^2 \cdot A A_1=4 \pi \cdot A A_1=12 \pi\),解得\(AA_1=3\).
    \(OA=2\)\(∠AOP=120 ^{\circ}\),得\(∠BAP=30 ^{\circ}\)\(BP=2\)\(AP=2\sqrt{3}\) .
    \(\therefore S_{\triangle P A B}=\dfrac{1}{2} \times 2 \times 2 \sqrt{3}=2 \sqrt{3}\)
    \(\therefore\)三棱锥\(A_1-APB\)的体积 \(V_{A_1-A P B}=\dfrac{1}{3} S_{A P A B} \cdot A A_1=\dfrac{1}{3} \times 2 \sqrt{3} \times 3=2 \sqrt{3}\)
    (2) 当点\(M\)\(AP\)的中点时,异面直线\(OM\)\(A_1 B\)所成的角的余弦值为\(\dfrac{2}{5}\) .
    证明如下:
    \(\because O\)\(M\)分别为\(AB\)\(AP\)的中点,\(\therefore OM||BP\)
    \(\therefore ∠A_1 BP\)就是异面直线\(OM\)\(A_1 B\)所成的角,
    \(\because A_1=3\)\(AB=4\)\(AA_1\perp AB\)\(\therefore A_1 B=5\)
    \(BP\perp A_1 P\)\(\therefore \cos \angle A_1 B P=\dfrac{B P}{A_1 B}=\dfrac{2}{5}\)
    \(\therefore\)当点\(M\)\(AP\)的中点时,异面直线\(OM\)\(A_1 B\)所成的角的余弦值为\(\dfrac{2}{5}\).
     

【题型2】 直线与直线垂直

【典题1】 空间四边形\(ABCD\)\(E\)\(F\)\(G\)分别是\(BC\)\(AD\)\(DC\)的中点,\(FG=2\)\(GE=\sqrt{5}\)\(EF=3\). 求证:\(AC\perp BD\).
image.png
解析 \(\because\)\(G\)\(E\)分别是\(CD\)\(BC\)的中点,\(\therefore GE||BD\),同理\(GF||AC\)
\(\therefore ∠FGE\)\(∠FGE\)的补角是异面直线\(AC\)\(BD\)所成的角.
\(△EFG\)中,\(\because FG=2\)\(GE=\sqrt{5}\)\(EF=3\),满足 \(F G^2+G E^2=E F^2\)
\(\therefore ∠FGE=90 ^{\circ}\).
即异面直线\(AC\)\(BD\)所成的角是\(90 ^{\circ}\)
\(\therefore AC\perp BD\).
点拨 证明两共面直线垂直,可利用勾股定理的逆定理;证明两异面直线垂直,证明求夹角为\(90^{\circ}\).
 

【巩固练习】

1.正方体\(ABCD—A_1 B_1 C_1 D_1\)中,\(E\)是棱\(AB\)上的动点,则直线\(A_1 D\)与直线\(C_1 E\)所成的角等于 (  )
 A.\(60^{\circ}\) \(\qquad \qquad \qquad \qquad\) B.\(90^{\circ}\) \(\qquad \qquad \qquad \qquad\) C.\(30^{\circ}\) \(\qquad \qquad \qquad \qquad\) D.随点\(E\)的位置而变化
 

2.点\(E\)\(F\)分别是三棱雉\(P-ABC\)的棱\(AP\)\(BC\)的中点,\(AB=6\)\(PC=8\)\(EF=5\),则异面直线\(AB\)\(PC\)所成的角为\(\underline{\quad \quad}\) .

3.如图所示,在空间四边形\(ABCD\)中,\(AD=BC=2\)\(E\)\(F\)分别是\(AB\)\(CD\)的中点,\(EF=\sqrt{2}\). 求证:\(AD\perp BC\).
image.png
 

4.在四棱柱\(ABCD-A_1 B_1 C_1 D_1\)中,侧面都是矩形,底面\(ABCD\)是菱形且\(AB=BC=2\sqrt{3}\)\(∠ABC=120 ^{\circ}\),若异面直线\(A_1 B\)\(AD_1\)所成的角为\(90 ^{\circ}\),试求\(AA_1\) .
image.png
 

参考答案

  1. 答案 \(B\)
    解析 正方体\(ABCD—A_1 B_1 C_1 D_1\)中,直线\(A_1 D\perp\)平面\(ABC_1 D_1\)
    \(\because C_1 E\subset\)平面\(ABC_1 D_1\)\(\therefore A_1 D\perp C_1 E\)
    \(\therefore\)直线\(A_1 D\)与直线\(C_1 E\)所成的角等于\(90^{\circ}\)
    故选 \(B\)
    image.png

  2. 答案 \(90 ^{\circ}\).
    解析 如图,取\(PB\)的中点\(G\),连结\(EG\)\(FG\)
    \(EG||AB\)\(EG=\dfrac{1}{2} AB\)\(GF||\dfrac{1}{2} PC\)\(GF=\dfrac{1}{2} PC\)
    image.png
    \(∠EGF\)(或其补角)即为\(AB\)\(PC\)所成的角,
    \(△EFG\)中,\(EG=\dfrac{1}{2} AB=3\)\(FG=\dfrac{1}{2} PC=4\)\(EF=5\)
    所以\(∠EFG=90 ^{\circ}\)
    即异面直线\(AB\)\(PC\)所成的角为\(90 ^{\circ}\).

  3. 证明 如图所示,取\(BD\)的中点\(H\),连接\(EH\)\(FH\).
    因为\(E\)\(AB\)的中点,且\(AD=2\)
    image.png
    所以\(EH∥AD\)\(EH=1\). 同理\(FH∥BC\)\(FH=1\)
    所以\(∠EHF\)(或其补角)是异面直线\(AD\)\(BC\)所成的角.
    因为\(EF=\sqrt{2}\), 所以\(E H^2+F H^2=E F^2\).
    所以\(△EFH\)是等腰直角三角形,\(EF\)是斜边,
    所以\(∠EHF=90 ^{\circ}\),即\(AD\)\(BC\)所成的角是\(90 ^{\circ}\)
    所以\(AD\perp BC\).

  4. 答案 \(\sqrt{6}\).
    解析 连接\(AC\)\(CD_1\)
    在四棱柱\(ABCD-A_1 B_1 C_1 D_1\)中,\(A_1 D_1 ||BC\)\(A_1 D_1=BC\)
    所以四边形\(A_1 BCD_1\)为平行四边形,则\(A_1 B||CD_1\)
    所以异面直线\(A_1 B\)\(AD_1\)所成的角为\(∠AD_1 C=90 ^{\circ}\)
    image.png
    因为四边形\(ADD_1 A_1\)\(CDD_1 C_1\)均为矩形,
    \(DD_1\perp AD\)\(DD_1\perp CD\)
    在菱形\(ABCD\)中,\(∠ABC=120 ^{\circ}\)\(AB=BC=2\sqrt{3}\)
    由余弦定理可得\(A C=\sqrt{A B^2+B C^2-2 A B \cdot B C \cos 120^{\circ}}=6\).
    \(AA_1=a\),则\(A D_1=C D_1=\sqrt{A D^2+D D_1^2}=\sqrt{a^2+12}\)
    因为\(∠AD_1 C=90 ^{\circ}\),由勾股定理可得\(A D_1^2+C D_1^2=A C^2\)
    \(2\left(a^2+12\right)=36\),解得\(a=\sqrt{6}\).
    所以\(AA_1=\sqrt{6}\).
     

分层练习

【A组---基础题】

1.正方体\(ABCD-A_1 B_1 C_1 D_1\)中,与对角线\(A_1 B\)\(45^{\circ}\)的棱有 (  )条.
 A.\(4\) \(\qquad \qquad \qquad \qquad\) B.\(8\) \(\qquad \qquad \qquad \qquad\) C.\(12\) \(\qquad \qquad \qquad \qquad\)D.\(2\)
 

2.如图,正方体\(ABCD-A_1 B_1 C_1 D_1\)中,点\(E\)\(F\)分别是\(AA_1\)\(AD\)的中点,则\(CD_1\)\(EF\)所成角为 (  )
image.png
 A.\(0^{\circ}\) \(\qquad \qquad \qquad \qquad\) B.\(45^{\circ}\) \(\qquad \qquad \qquad \qquad\)C.\(60^{\circ}\) \(\qquad \qquad \qquad \qquad\) D.\(90^{\circ}\)
 

3.在长方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(BC=2\)\(AB=BB_1=4\)\(E\)\(F\)分别是\(A_1 B_1\)\(CD\)的中点,则异面直线\(A_1 F\)\(BE\)所成角的正切值为(  )
image.png
 A. \(\dfrac{\sqrt{5}}{5}\) \(\qquad \qquad \qquad \qquad\) B.\(\sqrt{5}\) \(\qquad \qquad \qquad \qquad\)C. \(\dfrac{\sqrt{30}}{6}\) \(\qquad \qquad \qquad \qquad\) D. \(\dfrac{\sqrt{6}}{6}\)
 

4.四面体\(ABCD\)中,\(AB=BC=CD=DB=AC=2\)\(AD=3\),点\(M\)是边\(AB\)中点,则异面直线\(CM\)\(AD\)所成角的余弦值为(  )
 A. \(\dfrac{\sqrt{3}}{4}\) \(\qquad \qquad \qquad \qquad\) B. \(\dfrac{5}{8}\) \(\qquad \qquad \qquad \qquad\) C. \(\dfrac{\sqrt{3}}{8}\) \(\qquad \qquad \qquad \qquad\)D. \(\dfrac{5}{6}\)
 

5.(多选)如图,在四面体\(ABCD\)中,点\(P\)\(Q\)\(M\)\(N\)分别是棱\(AB\)\(BC\)\(CD\)\(AD\)的中点,截面\(PQMN\)是正方形,则下列结论正确的是 (  )
image.png
 A. \(AC\perp BD\) \(\qquad \qquad \qquad \qquad\) B. \(AC||\)截面\(PQMN\)
  C. \(AC=CD\) \(\qquad \qquad \qquad \qquad\) D.异面直线\(PM\)\(BD\)所成的角为\(45 ^{\circ}\)
 

6.如图,直三棱柱\(ABC﹣A_1 B_1 C_1\)中,若\(AB=AC=AA_1=1\)\(BC=\sqrt{2}\),则异面直线\(A_1 C\)\(B_1 C_1\)所成的角为\(\underline{\quad \quad}\)
image.png
 

7.如图,在四面体\(A-BCD\)中,\(AC=BD=a\)\(AC\)\(BD\)所成的角为\(60 ^{\circ}\)\(M\)\(N\)分别为\(AB\)\(CD\)的中点,则线段\(MN\)的长为\(\underline{\quad \quad}\).
image.png
 

8.如图,在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,动点\(M\)在线段\(A_1 C\)上,异面直线\(AD_1\)\(BM\)所成的角为\(\theta\) ,则\(\theta\)的取值范围是\(\underline{\quad \quad}\).(用区间表示)
image.png
 

9.已知\(E\)\(F\)\(G\)\(H\)依次为空间四边形\(ABCD\)各边的中点.
  (1)求证:\(E\)\(F\)\(G\)\(H\)四点共面;
  (2)若\(AC\)\(BD\)相互垂直,\(BD=2\)\(AC=4\),求\(E G^2+H F^2\)
  (3)若\(E G=\sqrt{7}\)\(BD=2\)\(AC=4\),求直线\(BD\)\(AC\)的夹角.
 
 
 

10.如图,空间四边形\(ABCD\)的对棱\(AD\)\(BC\)\(60 ^{\circ}\)的角,且\(AD=BC=a\),平行于\(AD\)\(BC\)的截面分别交\(AB\)\(AC\)\(CD\)\(BD\)于点\(E\)\(F\)\(G\)\(H\).E在\(AB\)的何处时截面\(EGFH\)的面积最大? 最大面积是多少?
image.png
 
 
 

参考答案

  1. 答案 \(B\)
    解析 如图所示
    image.png
    在正方形\(ABB_1 A_1\)中,\(AA_1\)\(AB\)\(BB_1\)\(A_1 B_1\)\(A_1 B\)均成\(45^{\circ}\)角,
    根据线线角的定义知,\(DD_1\)\(CC_1\)\(DC\)\(D_1 C_1\)都与\(A_1 B\)\(45^{\circ}\)角,
    所以满足条件的棱有\(8\)条,故选 \(B\)

  2. 答案 \(C\)
    解析 连结\(A_1 D\)\(BD\)\(A_1B\)
    \(\because\)正方体\(ABCD-A_1 B_1 C_1 D_1\)中,点\(E\)\(F\)分别是\(AA_1\)\(AD\)的中点,\(\therefore EF∥A_1 D\)
    \(\because A_1 B∥D_1 C\)\(\therefore ∠DA_1 B\)\(CD_1\)\(EF\)所成角,
    \(\because A_1 D=A_1 B=BD\)\(\therefore ∠DA_1 B=60^{\circ}\)\(\therefore CD_1\)\(EF\)所成角为\(60^{\circ}\)
    故选 \(C\)
    image.png

  3. 答案 \(A\)
    解析 连接\(CE\),如图所示:
    image.png
    因为\(A_1 E=CF=\dfrac{1}{2} CD\)\(A_1 E∥CF\),所以四边形\(A_1 ECF\)是平行四边形,
    所以\(EC∥A_1 F\)
    \(∠BEC\)是异面直线\(A_1 F\)\(BE\)所成角,
    因为\(BC=2\)\(AB=BB_1=4\)\(E\)\(F\)分别是\(A_1 B_1\)\(CD\)的中点,
    所以\(B_1 E=DF=\dfrac{1}{2} CD=2\)
    由勾股定理,得\(B E=\sqrt{2^2+4^2}=2 \sqrt{5}\)
    \(△BEC\)中,\(∠CBE=90^{\circ}\)\(\therefore \tan \angle B E C=\dfrac{B C}{B E}=\dfrac{\sqrt{5}}{5}\)
    故选:\(A\)

  4. 答案 \(A\)
    解析 \(BD\)的中点\(N\),连接\(MN\)\(NC\)
    因为点\(M\)是边\(AB\)中点,
    \(MN∥AD\)
    则异面直线\(CM\)\(AD\)所成角的平面角为\(∠CMN\)(或其补角),
    \(AB=BC=CD=DB=AC=2\)\(AD=3\)
    则在\(△CMN\)中,\(MN=\dfrac{3}{2}\)\(CM=CN=\sqrt{3}\)
    由余弦定理可得 \(\cos \angle C M N=\dfrac{M N^2+C M^2-C N^2}{2 \times M N \times C M}=\dfrac{\sqrt{3}}{4}\)
    故选:\(A\)
    image.png

  5. 答案 \(ABD\)
    解析 因为截面\(PQMN\)是正方形,所以\(PQ||MN\)\(PN||QM\)
    \(MN\subset\)平面\(DAC\)\(PQ\not \subset\)平面\(DAC\)
    所以\(PQ||\)平面\(DAC\)
    \(PQ\subset\)平面\(BAC\), 平面\(BAC \cap\)平面\(DAC=AC\)
    所以\(PQ||AC||MN\)
    因为\(AC\not \subset\)截面\(PQMN\)\(MN\subset\)截面\(PQMN\)
    所以\(AC||\)截面\(PQMN\),故\(B\)正确,
    同理可证\(PN||BD||MQ\)
    因为\(PN\perp NM\),所以\(AC\perp BD\),故\(A\)正确,
    \(∠PMQ=45 ^{\circ}\)
    所以异面直线\(PM\)\(BD\)所成的角为\(45 ^{\circ}\),故\(D\)正确,
    \(AC\)\(CD\)不一定相等,故 \(C\)错误,
    故选:\(ABD\).

  6. 答案 \(\dfrac{\pi}{3}\)
    解析 因为几何体是棱柱,\(BC∥B_1 C_1\)
    则直线\(A_1 C\)\(BC\)所成的角为就是异面直线\(A_1 C\)\(B_1 C_1\)所成的角.
    直三棱柱\(ABC﹣A_1 B_1 C_1\)中,
    \(AB=AC=AA_1=1\)\(BC=\sqrt{2}\)\(BA_1=\sqrt{2}\)\(CA_1=\sqrt{2}\)
    三角形\(BCA_1\)是正三角形,异面直线所成角为\(\dfrac{\pi}{3}\)
    故答案为\(\dfrac{\pi}{3}\)

  7. 答案 \(\dfrac{a}{2}\)\(\dfrac{\sqrt{3}}{2} a\).
    解析 \(BC\)的中点\(E\),连接\(EM\)\(EN\)
    image.png
    \(\because M\)\(E\)分别为\(AB\)\(BC\)的中点,
    \(\therefore ME||AC\)\(M E=\dfrac{1}{2} A C=\dfrac{a}{2}\)
    同理可得\(EN||BD\)\(E N=\dfrac{1}{2} B D=\dfrac{a}{2}\)
    \(\therefore ∠MEN\)为异面直线\(AC\)\(BD\)所成的角或其补角,则\(∠MEN=60 ^{\circ}\)\(120 ^{\circ}\)
    \(△MEN\)中,\(E M=E N=\dfrac{a}{2}\).
    \(∠MEN=60 ^{\circ}\),则\(△MEN\)为等边三角形,此时\(M N=\dfrac{a}{2}\)
    \(∠MEN=120 ^{\circ}\)
    由余弦定理可得 \(M N=\sqrt{E M^2+E N^2-2 E M \cdot E N \cos 120^{\circ}}=\dfrac{\sqrt{3}}{2} a\).
    综上所述,\(MN=\dfrac{a}{2}\)\(\dfrac{\sqrt{3}}{2} a\).

  8. 答案 \(\left[\dfrac{\pi}{6}, \dfrac{\pi}{3}\right]\)
    解析 连结\(BC_1\),则\(BC_1∥AD_1\)
    所以异面直线\(AD_1\)\(BM\)所成的角即为直线\(BC_1\)\(BM\)所成的角,
    所以\(\theta\)的最小值为\(BC_1\)与平面\(A_1 BC\)所成的角,
    \(CD_1\)\(C_1 D\)的交点为\(O\)
    \(∠OBC_1\)\(BC_1\)与平面\(A_1 BC\)所成的角,
    所以\(\sin \angle O B C_1=\dfrac{O C_1}{B C_1}=\dfrac{1}{2}\)
    因为\(∠OBC_1\)为锐角,所以\(\angle O B C_1=\dfrac{\pi}{6}\),即\(\theta\)的最小值为 \(\dfrac{\pi}{6}\)
    当点\(M\)与点\(A_1\)重合时,直线\(BC_1\)\(BM\)所成的角为 \(\angle A_1 B C=\dfrac{\pi}{3}\)
    此时\(\theta\)取得最大值,为 \(\dfrac{\pi}{3}\)
    所以\(\theta\)的取值范围是\(\left[\dfrac{\pi}{6}, \dfrac{\pi}{3}\right]\)
    image.png

  9. 答案 (1)略; (2) \(10\); (3) \(60^{\circ}\)
    解析 (1)证明:如图所示,\(\because E\)\(F\)\(G\)\(H\)依次为空间四边形\(ABCD\)各边的中点,
    \(\therefore EF=\dfrac{1}{2} AC\)\(GH=\dfrac{1}{2} AC\),且\(EF||AC\)\(GH||AC\)
    \(\therefore EF||GH\)\(EF=GH\)
    \(\therefore\)四边形\(EFGH\)为平行四边形.
    \(\therefore E\)\(F\)\(G\)\(H\)四点共面.
    (2)解:\(\because AC=4\)\(\therefore EF=2\);同理可得:\(EH=1\)
    \(AC\perp BD\)\(\therefore EF\perp EH\)
    可得四边形\(EFGH\)为矩形.
    \(\therefore E G^2+H F^2=2 \times\left(2^2+1^2\right)=10\)
    (3)解:由(1)可知:\(∠EFG\)或其补角为直线\(BD\)\(AC\)的夹角.
    \(\cos \angle E F G=\dfrac{2^2+1^2-(\sqrt{7})^2}{2 \times 2 \times 1}=-\dfrac{1}{2}\)
    \(\therefore\)直线\(BD\)\(AC\)的夹角为\(60^{\circ}\)
    image.png

  10. 答案\(E\)\(AB\)的中点时,截面的面积最大,最大面积为\(\dfrac{\sqrt{3}}{8} a^2\).
    解析 因为\(BC||\)平面\(EFGH\)\(BC\subset\)平面\(ABC\),平面\(ABC \cap\)平面\(EFGH=EF\)
    所以\(BC||EF\),同理\(GH||BC\),故\(GH||EF\),同理\(EH||FG\)
    所以四边形\(EFGH\)为平行四边形,
    \(\because AD\)\(BC\)\(60 ^{\circ}\)的角,\(\therefore ∠HGF=60 ^{\circ}\)\(120 ^{\circ}\).
    \(AE:AB=x\),则\(\dfrac{E F}{B C}=\dfrac{A E}{A B}=x\).
    \(BC=a\)\(\therefore EF=ax\). 由\(\dfrac{E H}{A D}=\dfrac{B E}{A B}=1-x\),得\(EH=a(1-x)\).
    \(\therefore\)四边形\(EFGH\)的面积为\(E F \times E H \times \sin 60^{\circ}=a x \times a(1-x) \times \dfrac{\sqrt{3}}{2}\)
    \(=\dfrac{\sqrt{3}}{2} a^2\left(-x^2+x\right)=\dfrac{\sqrt{3}}{2} a^2\left[-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right]\)
    \(x=\dfrac{1}{2}\)时,即当\(E\)\(AB\)的中点时,截面的面积最大,最大面积为\(\dfrac{\sqrt{3}}{8} a^2\).
     

【B组---提高题】

1.已知两异面直线\(a\)\(b\)所成的角为\(80^{\circ}\),过空间一点\(P\)作直线,使得l与\(a\)\(b\)的夹角均为\(50^{\circ}\),那么这样的直线有(  )条
 A.\(1\) \(\qquad \qquad \qquad \qquad\) B.\(2\) \(\qquad \qquad \qquad \qquad\) C.\(4\) \(\qquad \qquad \qquad \qquad\) D.\(3\)
 

2.在正方体\(ABCD-A_1 B_1 C_1 D_1\)中,\(E\)\(A_1 D_1\)的中点,平面\(A_1 C_1 B\)与平面\(CEC_1\)的交线为\(l\),则\(l\)\(AB\)所成角的余弦值为(  )
image.png
 A. \(\dfrac{1}{3}\) \(\qquad \qquad \qquad \qquad\) B.\(\dfrac{2}{3}\) \(\qquad \qquad \qquad \qquad\) C.\(\dfrac{\sqrt{3}}{3}\) \(\qquad \qquad \qquad \qquad\) D.\(\dfrac{\sqrt{6}}{3}\)
 

参考答案

  1. 答案 \(D\)
    解析 在空间取一点\(P\),经过点\(P\)分别作\(a∥a'\)\(b∥b'\)
    设直线\(a'\)\(b'\)确定平面\(\alpha\)
    当直线\(PM\)满足它的射影\(PQ\)\(a'\)\(b'\)所成角的平分线上时,
    \(PM\)\(a'\)所成的角等于\(PM\)\(b'\)所成的角
    因为直线\(a\)\(b\)所成的角为\(80^{\circ}\),得\(a'\)\(b'\)所成锐角等于\(80^{\circ}\)
    所以当\(PM\)的射影\(PQ\)\(a'\)\(b'\)所成锐角的平分线上时,
    \(PM\)\(a'\)\(b'\)所成角的范围是\([40 ^{\circ},90 ^{\circ} )\)
    这种情况下,过点\(P\)有两条直线与\(a'\)\(b'\)所成的角都是\(50^{\circ}\)
    \(PM\)的射影\(PQ\)\(a'\)\(b'\)所成钝角的平分线上时,
    \(PM\)\(a'\)\(b'\)所成角的范围是\([50 ^{\circ},90 ^{\circ} )\)
    这种情况下,过点\(P\)有且只有一条直线(即\(PM\subset \alpha\)时)与\(a'\)\(b'\)所成的角都是\(50^{\circ}\)
    综上所述,过空间任意一点\(P\)可作与\(a\)\(b\)所成的角都是\(50^{\circ}\)的直线有\(3\)
    故选:\(D\)
    image.png

  2. 答案 \(D\)
    解析 延长\(BA_1\)\(CE\)交直线于点\(M\),延长\(C_1 E\)\(B_1 A_1\)交于点\(N\)
    连接\(MN\)\(MC_1\)\(MD_1\),则直线\(MC_1\)即为交线\(l\)
    \(AB∥C_1 D_1\)\(\therefore ∠MC_1 D_1\)即为\(l\)\(AB\)所成的角,
    设正方体棱长为\(1\)
    \(\because E\)\(A_1 D_1\)的中点,\(A_1 E∥B_1 C_1∥BC\)
    \(\therefore A_1\)\(MB\)的中点,\(A_1\)\(NB_1\)的中点,点\(E\)\(MC\)的中点,\(E\)\(NC_1\)的中点,
    \(\therefore EM=EC\)\(EN=EC_1\),又\(∠MEN=∠CEC_1\)
    \(\therefore △EMN≅△ECC_1\)
    \(\therefore MN=CC_1=1\)\(∠MNE=∠CC_1 E=90^{\circ}\)
    \(\therefore C_1 D_1=1\)\(C_1 M=\sqrt{6}\)\(MD_1=\sqrt{3}\)
    \(\therefore \cos \angle M C_1 D_1=\dfrac{C_1 D_1^2+C_1 M^2-M D_1^2}{2 C_1 D_1 \cdot C_1 M}=\dfrac{\sqrt{6}}{3}\)
    \(l\)\(AB\)所成角的余弦值为 \(\dfrac{\sqrt{6}}{3}\)
    故选:\(D\)
    image.png
     

【C组---拓展题】

1.在正三棱台\(ABC-A_1 B_1 C_1\)中,\(AB=3AA_1=\dfrac{3}{2} A_1 B_1=6\)\(D\)\(BC\)的中点,设\(A_1 D\)\(BC\)\(BB_1\)\(BA\)所成角分别为\(\alpha\)\(β\)\(γ\),则(  )
image.png
  A. \(\alpha<\gamma<\beta\) \(\qquad \qquad\) B. \(\alpha<\beta<\gamma\) \(\qquad \qquad\)C. \(\beta<\gamma<\alpha\) \(\qquad \qquad\) D. \(\gamma<\beta<\alpha\)
 

参考答案

  1. 答案 \(D\)
    解析 如图\(1\),令\(B_1 C_1\)的中点为\(D_1\),连接\(A_1 D_1\)\(DD_1\)
    image.png
    在平面\(ADD_1 A_1\)中,过\(A_1\)\(DD_1\)的平行线\(A_1 E\)得图\(2\)
    image.png
    在平面\(BCC_1 B_1\)中,连接\(B_1 D\)得图\(3\),过\(B_1\)\(B_1 F\perp BC\)
    image.png
    由题意可得\(BF=1\)\(BB_1=2\),所以\(DD_1=B_1 F=\sqrt{3}\)\(∠B=60 ^{\circ}\)
    又因为\(DF=2\),所以\(B_1 D=\sqrt{7}\)
    \(△BCB_1\)中, \(B_1 C=2 \sqrt{7}\)
    则在图\(2\)中,\(AD=3\sqrt{3}\)\(DE=2\sqrt{3}\),所以\(AE=\sqrt{3}\)
    又因为\(AA_1=2\)\(A_1 E=D D_1=\sqrt{3}\)
    所以在三角形\(AA_1 E\)中由余弦定理可得: \(\cos \angle A_1 A D=\dfrac{4+3-3}{2 \times 2 \times \sqrt{3}}=\dfrac{\sqrt{3}}{3}\)
    在三角形\(AA_1 D\)中由余弦定理可得: \(\cos \angle A_1 A D=\dfrac{4+27-A_1 D^2}{2 \times 2 \times 3 \sqrt{3}}=\dfrac{\sqrt{3}}{3}\)
    解得 \(A_1 D=\sqrt{19}\)
    ①连接\(A_1 C\),则在三角形\(CA_1 D\)中,\(A_1 D=\sqrt{19}\)\(DC=3\)\(A_1 C=2 \sqrt{7}\)
    所以\(\cos \angle A_1 D C=\dfrac{19+9-28}{2 \times \sqrt{19} \times 3}=0\)
    所以\(∠A_1 DC=90^{\circ}\),即\(\alpha=90^{\circ}\)
    ②过\(A_1\)\(A_1 M∥BB_1\),则\(AM=2\)
    在三角形\(AMD\)中,\(∠MAD=30 ^{\circ}\)\(AD=3\sqrt{3}\)
    则由余弦定理可得 \(M D=\sqrt{27+4-2 \times 2 \times 3 \sqrt{3} \times \dfrac{\sqrt{3}}{2}}=\sqrt{13}\)
    在三角形\(A_1 MD\)中,\(A_1 M=2\)\(M D=\sqrt{13}\)\(A_1 D=\sqrt{19}\)
    所以\(\cos \angle M A_1 D=\dfrac{4+19-13}{2 \times 2 \times \sqrt{19}}=\dfrac{5}{2 \sqrt{19}}=\dfrac{5 \sqrt{19}}{38}\)
    所以 \(\cos \beta=\dfrac{5 \sqrt{19}}{38}\)
    ③在三角形\(A_1 B_1 D\)中,\(A_1 B_1=4\)\(A_1 D=\sqrt{19}\)\(B_1 D=\sqrt{7}\)
    所以\(\cos \angle B_1 A_1 D=\dfrac{16+19-7}{2 \times 4 \times \sqrt{19}}=\dfrac{28}{8 \sqrt{19}}=\dfrac{7 \sqrt{19}}{38}\)
    \(\cos \gamma=\dfrac{7 \sqrt{19}}{38}\)
    因为\(y=\cos x\)\(\left(0, \dfrac{\pi}{2}\right]\)单调递减,且\(\cos ⁡γ>\cos ⁡β>\cos ⁡\alpha\)
    所以\(\alpha>β>γ\)
    故选:\(D\)