重要不等式在解题中的应用

发布时间 2023-12-05 19:10:33作者: 会飞的鱼13

已知函数\(f(x)=(x+2)\ln x,g(x)=x^2+(3-a)x+2(1-a)\)

(1)若不等式\(f(x)\leq g(x)\)\(x\in(-2,+\infty)\)上恒成立,求\(a\)取值范围.

(2)证明:\(\displaystyle \sum\limits_{k=1}^{n}\left(1+\dfrac{1}{4^k}\right)<e^{\frac{1}{3}}\)

(1) \(f(x)\leq g(x)\) 转化为

\[a\leq (x+1-\ln(x+2))_{\min} \]

\(h(x)=x+1-\ln(x+2)\),\(h^{\prime}(x)=\dfrac{x+1}{x+2}\)

不难得到\(h(x)_{\min}=h(1)=0\)

从而\(a\leq 0\)

\[\ln\left(1+\dfrac{1}{4}\right)\leq \dfrac{1}{4} \]

\[\ln\left(1+\dfrac{1}{4^2}\right)\leq \dfrac{1}{4^2} \]

\[\vdots \]

\[\ln\left(1+\dfrac{1}{4^n}\right)\leq \dfrac{1}{4^n} \]

累加有

\[\ln\prod\limits_{k=1}^{n}\left(1+\dfrac{1}{4^k}\right)=\sum\limits_{k=1}^{n}\dfrac{1}{4^k}=\dfrac{1}{3}\left(1-\dfrac{1}{4^n}\right)<\dfrac{1}{3} \]

\[\prod\limits_{k=1}^{n}\left(1+\dfrac{1}{4^k}\right)<e^{\frac{1}{3}} \]