多元函数微积分期中复习复盘笔记

发布时间 2023-04-14 19:31:12作者: __Michael

多元微积分期中

极限与连续

定义

对于函数\(f:U\to V\)
重极限:

\[\forall \varepsilon >0,\exists \delta>0,当\bm x\in U,\|\bm x-\bm x_0\|<0时,\|f(\bm x)-A\|<\varepsilon\\\Downarrow\\\lim_{\bm x\to\bm x_0}f(\bm x)=A\\ \]

连续:

\[\lim_{\bm x\to\bm x_0}f(\bm x)=f(\bm x_0)\\ \]

累次极限:

\[形如\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)、\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)\\ \]

重极限与累次极限的关系

  • 累次极限存在但不相等\(\to\)重极限不存在
  • 重极限存在、累次极限存在\(\to\)累次极限相等

例题

例1:求极限:

\[\lim_{x→0,y→0}\frac{\sqrt{xy+1}-1}{xy} \]

解:

\[\lim_{x→0,y→0}\frac{\sqrt{xy+1}-1}{xy}=\lim_{x→0,y→0} \dfrac{xy}{xy\sqrt{xy+1}+1}=\lim_{x→0,y→0}\dfrac{1}{\sqrt{xy+1}+1}=\frac{1}{2} \]


例2:求极限

\[\lim_{x→∞,y→∞} \dfrac{x+y}{x^2-xy+y^2} \]

解:由于 \(|\dfrac{x+y}{x^2-xy+y^2}|≤|\dfrac{\frac{1}{y}+\frac{1}{x}}{\frac{x}{y}+\frac{y}{x}-1}|≤|\dfrac{1}{y}+\dfrac{1}{x}|→0\),故由夹逼准则知极限为0。


例3:证明

\[\lim_{x\to0,y\to 0}\dfrac{xy^2}{x^2+y^2}=0\\ \]

解:

\[\left|\dfrac{xy^2}{x^2+y^2}\right|=|y|\cdot\dfrac{|xy|}{x^2+y^2}\le \frac{1}{2}|y|\to 0\\ \]


例4:求极限

\[\lim_{x\to0,y\to0}\dfrac{\sin(x^2y+y^4)}{x^2+y^2}\\ \]

解:
\(|\sin x|\le |x|\),则

\[\begin{aligned}\left|\dfrac{\sin(x^2y+y^4)}{x^2+y^2}\right|&\le \left|\dfrac{x^2y+y^4}{x^2+y^2}\right|\\&\le\left|\dfrac{x^2y}{x^2+y^2}\right|+\left|\dfrac{y^4}{x^2+y^2}\right|=|y|\cdot\dfrac{x^2}{x^2+y^2}+y^2\cdot\dfrac{y^2}{x^2+y^2}\\&\le |y|+y^2\to 0\end{aligned}\\ \]

例5:证明极限 \(\displaystyle \lim_{(x,y)\to(0,0)}\dfrac{x^2y^2}{x^2y^2+(x-y)^2}\) 不存在
解:
\((x,y)\) 沿着 \(y=x\) 趋近于 \((0,0)\)

\[\lim_{x\to 0,y=x}\dfrac{x^2y^2}{x^2y^2+(x-y)^2}=\lim_{x\to 0}\dfrac{x^4}{x^4+(x-x)^2}=1\\ \]

\((x,y)\) 沿着 \(y=0\) 趋近于 \((0,0)\)

\[\lim_{x\to 0,y=0}\dfrac{x^2y^2}{x^2y^2+(x-y)^2}=0\\ \]

因此极限不存在

多元函数的泰勒公式

对于函数 \(f(x,y)\) ,将其在 \((x_0,y_0)\) 处进行展开

\[g(t)=f(x_0+t(x-x_0),y_0+t(y-y_0)) \]

\[g(1)=f(x,y)\\ \]

由泰勒公式,有

\[g(t)=g(0)+g'(0)t+\frac{1}{2}g''(0)t^2+\cfrac{1}{6}g'''(\xi)t^2\quad \xi\in(0,t)\\ \]

\[g(1)=g(0)+g'(0)+\cfrac{1}{2}g''(0)+\cfrac{1}{6}g'''(\xi)\quad\xi\in(0,1)\\ \]

\[\begin{aligned}g(0)&=f(x_0,y_0)\\g'(0)&=(x-x_0)\cfrac{\partial f}{\partial x}\bigg|_{(x_0,y_0)}+(y-y_0)\cfrac{\partial f}{\partial y}\bigg|_{(x_0,y_0)}\\g''(0)&=(x-x_0)^2\cfrac{\partial^2 f}{\partial x^2}\bigg|_{(x_0,y_0)}+2(x-x_0)(y-y_0)\cfrac{\partial^2 f}{\partial x\partial y}\bigg|_{(x_0,y_0)}+(y-y_0)^2\cfrac{\partial ^2f}{\partial y^2}\end{aligned}\\ \]

\[\begin{aligned}f(x,y)&=f(x_0,y_0)\\&+(x-x_0)\cfrac{\partial f}{\partial x}\bigg|_{(x_0,y_0)}+(y-y_0)\cfrac{\partial f}{\partial y}\bigg|_{(x_0,y_0)}\\&+\cfrac{1}{2}(x-x_0)^2\cfrac{\partial^2 f}{\partial x^2}\bigg|_{(x_0,y_0)}+(x-x_0)(y-y_0)\cfrac{\partial^2 f}{\partial x\partial y}\bigg|_{(x_0,y_0)}+\cfrac{1}{2}(y-y_0)^2\cfrac{\partial ^2f}{\partial y^2}\\&+o(x^2+y^2)\end{aligned}\\ \]

\[\begin{aligned}f(x,y)&=f(x_0,y_0)\\&+(x-x_0)\cfrac{\partial f}{\partial x}\bigg|_{(x_0,y_0)}+(y-y_0)\cfrac{\partial f}{\partial y}\bigg|_{(x_0,y_0)}\\&+\cfrac{1}{2}(x-x_0)^2\cfrac{\partial^2 f}{\partial x^2}\bigg|_{M}+(x-x_0)(y-y_0)\cfrac{\partial ^2f}{\partial x\partial y}\bigg|_{M}+\cfrac{1}{2}(y-y_0)^2\cfrac{\partial^2 f}{\partial y^2}\bigg|_{M}\end{aligned}\\M\in(x_0,x)\times(y_0,y)\\ \]

可微、全微分与偏导数

向量值函数的可微性

对于向量值函数\(\bm f:\mathbb{R^m}\to\mathbb{R^n}\),如果存在线性映射\(L:\mathbb{R^m}\to\mathbb{R^n}\)满足

\[\lim_{\bm h\to 0}\dfrac{\|\bm f(\bm x_0+\bm h)-\bm f(\bm h)-L(\bm h)\|}{\|\bm h\|}=0\\ \]

则称其在\(\bm x_0\)处可微,记微分

\[\mathrm{D}\bm f(\bm h)=L(\bm h)\\ \]

标量函数的可微性、全微分与偏导数

如果一个多元标量函数 \(f\) 的全增量能够写成线性增量加上一个无穷小量,即

\[\Delta f = A\Delta x + B\Delta y + o(\rho) \]

其中\(\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2}\),那么该函数在该点可微,其中\(A\)\(B\)分别是该点对\(x\)\(y\)偏导数,记为\(\dfrac{\partial f}{\partial x}=A,\dfrac{\partial f}{\partial y}=B\)

\[\lim_{\begin{matrix}\small\scriptstyle\Delta x\to 0\\\small\scriptstyle\Delta y\to 0\end{matrix}}\frac{\Delta f-A\Delta x-B\Delta y}{\sqrt{(\Delta x)^2+(\Delta y)^2}}=0 \]

\[\lim_{x\to x_0,y\to y_0}\dfrac{f(x,y)-f(x_0,y_0)-A(x-x_0)-B(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0\\ \]

记微分

\[\mathrm{d}f(x,y)=Ax+By \]

偏导数的定义如下:

\[f_x(x_0,y_0)=\dfrac{\partial f}{\partial x}\bigg|_{(x_0,y_0)}=\lim_{x\to x_0}\dfrac{f(x,y_0)-f(x_0,y_0)}{x-x_0}\\f_y(x_0,y_0)=\dfrac{\partial f}{\partial y}\bigg|_{(x_0,y_0)}=\lim_{y\to y_0}\dfrac{f(x_0,y)-f(x_0,y_0)}{y-y_0} \]

全微分

\[\mathrm{d}f=\dfrac{\partial f}{\partial x}\mathrm{d}x+\dfrac{\partial f}{\partial y}\mathrm{d}y\\ \]

雅各比矩阵

\[\cfrac{\partial (y_1,y_2)}{\partial (x_1,x_2)}=\begin{bmatrix}\cfrac{\partial y_1}{\partial x_1}&\cfrac{\partial y_1}{\partial x_2}\\\cfrac{\partial y_2}{\partial x_1}&\cfrac{\partial y_2}{\partial x_2}\end{bmatrix} \]

可微与偏导数连续的关系

(1) 偏导数连续 \(f_x,f_y\) 均连续,说明 \(f\) 可微,但 \(f\) 可微不一定偏导数连续

函数可微但偏导数不连续的例子:

\[f(x,y)=\left\{\begin{matrix}(x^2+^2)\sin\frac{1}{x^2+y^2}&(x,y)\ne (0,0)\\0&(x,y)=(0,0)\end{matrix}\right.\\ \]

(2)\(f\) 可微,则一阶偏导数均存在
(3)\(f\)\((x,y)\) 处可微,则 \(f\) 一定在 \((x,y)\) 处连续

例题

例1:已知理想气体状态方程 \(PV=RT\)\(R\) 为常数),求证

\[\dfrac{\partial P}{\partial V}\cdot\dfrac{\partial V}{\partial T}\cdot\dfrac{\partial T}{\partial P}=-1\\ \]

解:

\[\begin{aligned}&P=\dfrac{RT}{V}\Rightarrow\dfrac{\partial P}{\partial V}=-\dfrac{RT}{V^2}\\&V=\dfrac{RT}{P}\Rightarrow \dfrac{\partial V}{\partial T}=\dfrac{R}{P}\\&T=\dfrac{PV}{R}\Rightarrow\dfrac{\partial T}{\partial P}=\dfrac{V}{R}\end{aligned}\\ \]

\[\dfrac{\partial P}{\partial V}\cdot\dfrac{\partial V}{\partial T}\cdot\dfrac{\partial T}{\partial P}=-\dfrac{RT}{V^2}\cdot\dfrac{R}{P}\cdot\dfrac{V}{R}=-\dfrac{RT}{PV}=-1\\ \]

方向导数与梯度

方向导数

对函数\(f:v\to \mathbb{R}\),记\(f_{\bm v}:t\to f(\bm x+t\bm v)\),若\(f_{\bm v}\)\(t\)的微分在\(t=0\)处存在,那么可定义\(f\)\(\bm x\)处沿方向\(\bm v\)的导数为

\[\mathrm{D}_{\bm v}f(\bm x)=\dfrac{\partial f}{\partial \bm v}=\frac{\mathrm{d}f_{\bm v}}{\mathrm{d}t}\bigg|_{t=0}=\lim_{t\to 0}\dfrac{f(\bm x+t\bm v)-f(\bm x)}{t}\\ \]

\(\boldsymbol{v}\)单位向量时,\(D_{\boldsymbol{v}}f(x_0, y_0)\) 就是函数 \(f(x, y)\)\((x_0, y_0)\) 处的方向导数

  • \(\mathrm{D}_{\bm v}(f+g)=\mathrm{D}_{\bm v}f+\mathrm{D}_{\bm v}g\)
  • \(\mathrm{D}_{\bm v}(cf)=c\mathrm{D}_{\bm v}f\)
  • \(\mathrm{D}_{\bm v}(fg)=g\mathrm{D}_{\bm v}f+f\mathrm{D}_{\bm v}g\)
  • \(h:\mathbb{R}\to\mathbb{R},g:U\to \mathbb{R}\),则\(\mathrm{D}_{\bm v}(h\circ g)(\bm x)=h'(g(\bm x))\mathrm{D}_{\bm v}g(\bm x)\)
  • 方向导数存在时,偏导数不一定存在;可微是方向导数存在的充分条件,而不是必要条件。例:\(f=\sqrt{x^2+y^2}\)

梯度

梯度是一个矢量,梯度的方向是方向导数中取到最大值的方向,梯度的值是方向导数的最大值,函数 \(f(\bm x)\)\(\bm x_0\) 处的梯度记为\(\nabla f(\bm x_0)\)\(\cfrac{\partial f(\bm x_0)}{\partial \bm x}\)\(\text{grad}f(\bm x_0)\),且

\[\nabla f(\bm x_0)=\begin{bmatrix}\cfrac{\partial f}{\partial x_1}&\cdots&\cfrac{\partial f}{\partial x_n}\end{bmatrix}^T\\ \]

  • \(\nabla (c_1f+c_2g)=c_1\nabla f+c_2\nabla g\)
  • \(\nabla(fg)=f\nabla g+g\nabla f\)
  • \(\nabla\left(\cfrac{f}{g}\right)=\cfrac{g\nabla f-f\nabla g}{g^2}\)
  • \(h:\mathbb{R}\to\mathbb{R},g:U\to \mathbb{R}\),则\(\nabla(h\circ g)(\bm x)=h'(g(\bm x))\nabla g(\bm x)\)

方向导数与梯度的关系

  • 梯度的方向是方向导数中取到最大值的方向
  • 梯度的值是方向导数的最大值
  • \(\mathrm{D}_{\bm v}f=\nabla f\cdot \bm v\)

例题

例1:设 \(\displaystyle f(x,y)=\left\{\begin{matrix}\cfrac{xy^2}{x^2+y^4}&x^2+y^2\ne 0\\0&x^2+y^2=0\end{matrix}\right.\),求 \(f\) 沿 \(\vec{e}=(\cos \theta,\sin \theta)\) 在点 \((0,0)\) 的方向导数
解:
\(\cos\theta\ne 0\)

\[\begin{aligned}\frac{\partial f}{\partial \vec{e}}\bigg|_{(0,0)}&=\lim_{\rho\to 0}\frac{f(\rho \cos\theta,\rho\sin\theta)-f(0,0)}{\rho}\\&=\lim_{\rho\to 0}\frac{ \cos\theta\sin^2\theta}{\cos^2\theta+\rho^2\sin^4\theta}\\&=\frac{\sin^2\theta}{\cos\theta}\end{aligned}\\ \]

\(\cos\theta =0\) 时,\(f(\rho \cos\theta,\rho\sin\theta)=0\)

\[\frac{\partial f}{\partial \vec{e}}\bigg|_{(0,0)}=0\\ \]


例2:求函数 \(z=xe^{2y}\) 在点 \(P(1,0)\) 处沿着从点\(P(1,0)\)到点\(Q(2,-1)\)的方向的方向导数
解:

\[\vec{v}=\overrightarrow{PQ}=(1,-1) \]

\[\hat{v}=\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)\\ \]

\[\nabla z(1,0)=(1,2)\\ \]

\[\frac{\partial z}{\partial \hat{v}}\bigg|_{(1,0)}=\nabla z(1,0)\cdot\hat{v}=-\frac{\sqrt{2}}{2}\\ \]


例3:设\(u=xyz+z^2+5\),求在点\(M(0,1,-1)\)处方向导数的最大值和最小值
解:

\[\begin{aligned}&\because \cfrac{\partial u}{\partial x}=yz\qquad\cfrac{\partial u}{\partial y}=xz\qquad\cfrac{\partial u}{\partial z}=xy+2z\\&\therefore\text{grad}\;u(0,1,-1)=(yz,xz,xy+2z)|_{(0,1,-1)}=(-1,0,-2)\end{aligned}\\ \]

因此

\[\max\left\{\frac{\partial u}{\partial \bm v}\right\}=\|\text{grad}\;u\|=\sqrt{5}\\\min\left\{\frac{\partial u}{\partial \bm v}\right\}=-\|\text{grad}\;u\|=-\sqrt{5}\\ \]

多元复合函数求导

推导

\[(x,y)\mapsto(u,v)\mapsto f \]

\[\mathrm{d}f=\frac{\partial f}{\partial u}\mathrm{d}u+\frac{\partial f}{\partial v}\mathrm{d}v \]

\[\mathrm{d}u=\frac{\partial u}{\partial x}\mathrm{d}x+\frac{\partial u}{\partial y}\mathrm{d}y \]

\[\mathrm{d}v=\frac{\partial v}{\partial x}\mathrm{d}x+\frac{\partial v}{\partial y}\mathrm{d}y\\ \]

因此

\[\mathrm{d}f=\left(\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}\right)\mathrm{d}x+\left(\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}\right)\mathrm{d}y\\ \]

例题

例1:若 \(g(x,y,z)=e^{x^3+y^2+z}\)\(f(x,y)=g(x,y,x\sin y)\),求 \(\cfrac{\partial f}{\partial x}\)

\[\begin{aligned}\mathrm{d}f=\mathrm{d}g&=\frac{\partial g}{\partial x}\mathrm{d}x+\frac{\partial g}{\partial y}\mathrm{d}y+\frac{\partial g}{\partial z}\mathrm{d}z\\&=\left(\frac{\partial g}{\partial x}+\frac{\partial g}{\partial z}\frac{\partial z}{\partial x}\right)\mathrm{d}x+\left(\frac{\partial g}{\partial y}+\frac{\partial g}{\partial z}\frac{\partial z}{\partial y}\right)\mathrm{d}y\end{aligned}\\ \]

\[\frac{\partial f}{\partial x}=\frac{\partial g}{\partial x}+\frac{\partial g}{\partial z}\frac{\partial z}{\partial x}=(3x^2+\sin y)e^{x^3+y^2+x\sin y}\\ \]


例2:若函数 \(f(x+y,x-y)=x^2-y^2\),求 \(\cfrac{\partial f(x,y)}{\partial x}+\cfrac{\partial f(x,y)}{\partial y}\)
解:

\[\left\{\begin{matrix}u=x+y\\v=x-y\end{matrix}\right.\Rightarrow \left\{\begin{matrix}x=\cfrac{u+v}{2}\\y=\cfrac{u-v}{2}\end{matrix}\right. \]

\[\begin{aligned}\frac{\partial f(u,v)}{\partial u}+\frac{\partial f(u,v)}{\partial v}&=\left(\frac{\partial f}{\partial x}\frac{\partial x}{\partial u}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial u}\right)+\left(\frac{\partial f}{\partial x}\frac{\partial x}{\partial v}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial v}\right)\\&=\frac{1}{2}(u+v)+\frac{1}{2}(u-v)+\frac{1}{2}(u+v)-\frac{1}{2}(u-v)\\&=u+v\end{aligned}\\ \]

\[\cfrac{\partial f(x,y)}{\partial x}+\cfrac{\partial f(x,y)}{\partial y}=x+y \]

隐函数定理及逆映射定理

隐函数定理

\(F:U\subset \mathbb{R^{m+n}}\to \mathbb{R^m}\) 是一个\(\mathscr{C}^p\)映射(P阶光滑),若 \(\bm x_0\in \mathbb{R^n},\bm y_0\in \mathbb{R^m},(\bm x_0,\bm y_0)\in U\) 满足

  • \(F(\bm x_0,\bm y_0)=\bm 0\)
  • \(\dfrac{\partial F}{\partial \bm y}(\bm x_0,\bm y_0)\)\(m\) 阶可逆矩阵

则存在 \((\bm x_0,\bm y_0)\) 的领域 \(U_x\times U_y\subset U\),以及 \(\mathscr{C}^p\) 映射 \(f:U_x\to U_y\),使得

\[F(\bm x,\bm y)=0\Leftrightarrow \bm y=f(\bm x)\\ \]

\[f'(\bm x)=-\left(\frac{\partial F}{\partial \bm y}\right)^{-1}\left(\frac{\partial F}{\partial \bm x}\right)\\ \]

其中\(f'(\bm x)\)表示\(f(\bm x)\)\(\text{Jacobi}\)矩阵

:::danger

  • \(F\)\(f\)的像空间的维数相同,即\(F(\bm x,\bm y)\)的维数与\(f(\bm x)\)的维数相同
    :::

反函数定理

\(U\subset\mathbb{R^n}\)\(f:U\to\mathbb{R^n}\)是一个\(\mathscr{C}^p\)的映射,若 \(f\)\(\bm x_0\) 处的\(\text{Jacobi}\)矩阵是可逆矩阵,则反函数\(f^{-1}\)也是\(\mathscr{C}^p\)的映射,且

\[(f^{-1})'(\bm y)=(f'(\bm x))^{-1}\\ \]

或记作

\[J_{f^{-1}}(\bm y)=J_f(\bm x)^{-1}\\ \]

关于逆映射定理的证明? - 知乎:https://www.zhihu.com/question/67456647

例题

例1:已知方程 \(x^2 + y^2 - 4x - 6y + 12 = 0\),求在点 \((1,2)\) 处的切线方程。

解:
\(F(x,y)=x^2+y^2-4x-6y+12\)

\[\frac{\partial F}{\partial x}= 2x-4 \qquad \frac{\partial F}{\partial y}= 2y - 6 \]

在点 \((1,2)\) 处,代入可得:

\[\frac{\partial F}{\partial x} \bigg|_{(1,2)} = -2 \qquad \frac{\partial F}{\partial y} \bigg|_{(1,2)} = -2 \]

斜率为

\[\frac{\mathrm{d}y}{\mathrm{d}x}\bigg|_{(1,2)}=-\dfrac{\left.\frac{\partial F}{\partial x}\right|_{(1,2)}}{\left.\frac{\partial F}{\partial y}\right|_{(1,2)}}=-1\\ \]

因此切线方程为:

\[x+y=3 \]


例2:方程 \(x^3+y^3+z^3=x+y+z\) 在点 \((x,y,z)=(1,1,-1)\) 附近确定了一个二阶连续可微的隐函数 \(z=z(x,y)\) ,满足 \(z(1,1)=-1\),则 \(\cfrac{\partial ^2z}{\partial x\partial y}(1,1)=\_\_\_\_\_\)
解:
方程

\[x^3+y^3+z^3(x,y)=x+y+z(x,y)\\ \]

\(x\) 求偏导得:

\[3x^2+3z^2(x,y)\cfrac{\partial z}{\partial x}=1+\cfrac{\partial z}{\partial x}\\ \]

再对 \(y\) 求偏导得:

\[6z(x,y)\cfrac{\partial z}{\partial x}\cdot\cfrac{\partial z}{\partial y}+3z^2(x,y)\cfrac{\partial^2 z}{\partial x\partial y}=\cfrac{\partial ^2z}{\partial x\partial y}\\ \]

\[\cfrac{\partial^2 z}{\partial x\partial y}=\cfrac{6z}{1-3z^2}\cdot\cfrac{\partial z}{\partial x}\cdot\cfrac{\partial z}{\partial y}\\ \]

\[\cfrac{\partial z}{\partial x}=-\cfrac{1-3x^2}{1-3z^2}\qquad\cfrac{\partial z}{\partial y}=-\cfrac{1-3y^2}{1-3z^2}\\ \]

\[\cfrac{\partial^2 z}{\partial x\partial y}=\cfrac{6z(1-3x^2)(1-3y^2)}{(1-3z^2)^3}\\ \]

\[\cfrac{\partial ^2z}{\partial x\partial y}\bigg|_{(1,1,-1)}=3\\ \]

极值

多元函数的无条件极值

当我们在优化一个函数时,Hesse矩阵是一个非常重要的概念。它是一个二阶导数矩阵,表示函数的曲率和凸性。在本篇笔记中,我们将学习Hesse矩阵的定义、性质以及如何计算它。

Hesse矩阵的定义

\(f(x_1,x_2,...,x_n)\)是一个具有二阶连续偏导数的函数,则\(f\)的Hesse矩阵\(H\)定义为:

\[H_{i,j}=\frac{\partial^2 f}{\partial x_i \partial x_j} \]

其中\(1\leq i,j \leq n\)

Hesse矩阵的性质

Hesse矩阵是一个对称矩阵,即\(H_{i,j}=H_{j,i}\)。这是由于二阶偏导数的次序不影响结果。

如果\(f\)是一个凸函数,则\(H\)是一个半正定矩阵。

如果\(f\)是一个严格凸函数,则\(H\)是一个正定矩阵。

Hesse矩阵的计算

计算Hesse矩阵需要对每个变量求二阶偏导数。以下是一些常见函数的Hesse矩阵:

  • \(f(x,y)=x^2+y^2\)的Hesse矩阵为:

\[H=\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \]

  • \(f(x,y)=xy\)的Hesse矩阵为:

\[H=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

  • \(f(x,y)=x^3+y^3-3xy\)的Hesse矩阵为:

\[H=\begin{bmatrix} 6x-6y & -6 \\ -6 & 6y-6x \end{bmatrix} \]

我们也可以用LaTeX来表示Hesse矩阵。例如,\(H=\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}\)可以表示为\(H_{i,j}=\frac{\partial^2 f}{\partial x_i \partial x_j}=\begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} \end{bmatrix}=\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}\)

以上就是Hesse矩阵的学习笔记,希望对你有所帮助!

首先令 \(\cfrac{\partial f}{\partial x_i}=0\) ,求出满足条件的点 \(\bm x\)

多元函数的条件极值

对于一个多元函数

\[f(x_1,x_2,\cdots,x_n) \]

如果存在一些约束条件

\[g_1(x_1,x_2,\cdots,x_n)=0\\g_2(x_1,x_2,\cdots,x_n)=0\\\vdots\\g_m(x_1,x_2,\cdots,x_n)=0 \]

可以通过拉格朗日乘数法来找到其条件极值点。

具体来说,我们需要建立拉格朗日函数:

\[L(x_1,x_2,\cdots,x_n,\lambda_1,\lambda_2,\cdots,\lambda_m) = f(x_1,x_2,\cdots,x_n) - \sum_{i=1}^m\lambda_i g_i(x_1,x_2,\cdots,x_n) \]

其中 \(\lambda_1,\lambda_2,\cdots,\lambda_m\) 是拉格朗日乘数。然后我们需要求出拉格朗日函数的偏导数,并令其等于零,即:

\[\frac{\partial L}{\partial x_1} = 0,\frac{\partial L}{\partial x_2} = 0,\cdots,\frac{\partial L}{\partial x_n} = 0\\\;\\\frac{\partial L}{\partial \lambda_1} = 0,\frac{\partial L}{\partial \lambda_2} = 0,\cdots,\frac{\partial L}{\partial \lambda_m} = 0 \]

解这个方程组,就可以得到函数的条件极值点。

例题

求解函数 \(f(x,y)=x^2+y^2\) 在约束条件 \(g(x,y)=x+y-1=0\) 下的条件极值点。

首先,建立拉格朗日函数:

\[L(x,y,\lambda)=f(x,y)-\lambda g(x,y)=x^2+y^2-\lambda(x+y-1) \]

然后求出偏导数:

\[\frac{\partial L}{\partial x}=2x-\lambda=0 \]

\[\frac{\partial L}{\partial y}=2y-\lambda=0 \]

\[\frac{\partial L}{\partial \lambda}=x+y-1=0 \]

解这个方程组,得到 \(x=y=\frac{1}{2}\),代入原函数可得条件极值点 \((\frac{1}{2},\frac{1}{2})\)

接下来,我们需要判断这个点是否为条件极值点。我们可以通过求二阶偏导数来判断。计算得到:

\[\frac{\partial^2 L}{\partial x^2}=2,\frac{\partial^2 L}{\partial y^2}=2,\frac{\partial^2 L}{\partial x \partial y}=0 \]

几何应用

曲面

对于曲面 \(z(x,y)\)上一点\((x_0,y_0,z_0)\),由于

\[\tag1\mathrm{d}z=\frac{\partial z}{\partial x}\mathrm{d}x+\frac{\partial z}{\partial y}\mathrm{d}y \]

同时

\[\begin{bmatrix}\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}z\end{bmatrix}=\begin{bmatrix}x-x_0\\y-y_0\\z-z_0\end{bmatrix}\\ \]

得到切平面方程

\[z-z_0=\frac{\partial z}{\partial x}(x-x_0)+\frac{\partial z}{\partial y}(y-y_0)\\ \]

\((1)\)变形得到

\[\frac{\partial z}{\partial x}\mathrm{d}x+\frac{\partial z}{\partial y}\mathrm{d}y-\mathrm{d}z=0\\ \]

\[\begin{bmatrix}\cfrac{\partial z}{\partial x}&\cfrac{\partial z}{\partial y}&-1\end{bmatrix}\begin{bmatrix}\mathrm{d}x\\\mathrm{d}y\\\mathrm{d}z\end{bmatrix}=0\\ \]

\(\begin{bmatrix}\mathrm{d}x&\mathrm{d}y&\mathrm{d}z\end{bmatrix}^T\)为切平面中的向量,则\((x_0,y_0,z_0)\)处的法向量为

\[\vec{n}=\begin{bmatrix}\cfrac{\partial z}{\partial x}&\cfrac{\partial z}{\partial y}&-1\end{bmatrix}^T\\ \]

同理,对于曲面\(f(x,y,z)=0\)上一点\((x_0,y_0,z_0)\)

\[\mathrm{d}f=\frac{\partial f}{\partial x}\mathrm{d}x+\frac{\partial f}{\partial y}\mathrm{d}y+\frac{\partial f}{\partial z}\mathrm{d}z=0\\ \]

切平面为

\[\frac{\partial f}{\partial x}(x-x_0)+\frac{\partial f}{\partial y}(y-y_0)+\frac{\partial f}{\partial z}(z-z_0)=0\\ \]

法向量为

\[\vec{n}=\begin{bmatrix}\cfrac{\partial f}{\partial x}&\cfrac{\partial f}{\partial y}&\cfrac{\partial f}{\partial z}\end{bmatrix}^T\\ \]

曲线

参数方程确定的空间曲线

若空间曲线 \(\Gamma\) 的参数方程为

\[\left\{\begin{matrix}x=\varphi(t)\\y=\psi(t)&t\in[\alpha,\beta]\\z=\omega(t)\end{matrix}\right.\\ \]

曲线上一点 \(M\) 对应 \(t=t_0\),在曲线上靠近 \(M\) 的地方有一点 \(M'\),则

\[\overrightarrow{M'M}=(\Delta x,\Delta y,\Delta z)\\ \]

割线 \(M'M\) 的方程为

\[\frac{x-x_0}{\Delta x}=\frac{y-y_0}{\Delta y}=\frac{z-z_0}{\Delta z}\\\Downarrow\\\frac{x-x_0}{\frac{\Delta x}{\Delta t}}=\frac{y-y_0}{\frac{\Delta y}{\Delta t}}=\frac{z-z_0}{\frac{\Delta z}{\Delta t}} \]

\(M'\to M\)时,\(\Delta t\to 0\),则切线方程为

\[\frac{x-x_0}{\varphi'(t)}=\frac{y-y_0}{\psi'(t)}=\frac{z-z_0}{\omega'(t)}\\ \]

则切向量为

\[(\varphi'(t),\psi'(t),\omega'(t)) \]

又由切向量是法平面的法向量,则法平面为

\[(x-x_0)\varphi'(t)+(y-y_0)\psi'(t)+(z-z_0)\omega'(t)=0\\ \]

空间曲面相交形成的空间曲线

对于空间曲线 \(z_1(x,y)\cap z_2(x,y)\) 上一点 \((x_0,y_0,z_0)\),其切线为两曲线切平面的交线,即为

\[\left\{\begin{matrix}z-z_0=\cfrac{\partial z_1}{\partial x}(x-x_0)+\cfrac{\partial z_1}{\partial y}(y-y_0)\\z-z_0=\cfrac{\partial z_2}{\partial x}(x-x_0)+\cfrac{\partial z_2}{\partial y}(y-y_0)\end{matrix}\right.\\ \]

切向量、法平面均借助同样的方法求得。