人工智能 人工 深度 机器

如何用智能地教狗狗上厕所

背景 22年养了一只很可爱的小狗狗,我其实就一个问题:为啥这么可爱的狗狗会拉屎撒尿呀? 自从崽崽来了我们家之后,最让我们头疼的就是它乱拉、乱尿的问题了,以前会在家里到处乱来,最近一段时间好了很多,已经只会在厕所拉/尿了。 虽然能都在厕所拉/尿,但是还是很耗费我们的精力。 我们家厕所是这样的,我们把它 ......
厕所 智能

深度学习基础-损失函数详解

大多数深度学习算法都会涉及某种形式的优化,所谓优化指的是改变 x 以最小化或最大化某个函数 f(x) 的任务,我们通常以最小化 f(x) 指代大多数最优化问题。损失函数大致可分为两种:回归损失(针对连续型变量)和分类损失(针对离散型变量)。常用的减少损失函数的优化算法是“梯度下降法”(Gradien... ......
函数 深度 损失 基础

机器学习基本原理

深度学习是机器学习的一个特定分支。我们要想充分理解深度学习,必须对机器学习的基本原理有深刻的理解。 大部分机器学习算法都有超参数(必须在学习算法外手动设定)。机器学习本质上属于应用统计学,其更加强调使用计算机对复杂函数进行统计估计,而较少强调围绕这些函数证明置信区间;因此我们会探讨两种统计学的主要... ......
原理 机器

机器学习经典算法总结

K 近邻算法(KNN)是一种基本分类和回归方法。KNN 算法的核心思想是如果一个样本在特征空间中的 k 个最相邻的样本中的大多数属于一个类别,那该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分类样本所属的类别。 ......
算法 机器 经典

C++进阶(智能指针)

智能指针原理 C++程序设计中使用堆内存是非常频繁的操作,堆内存的申请和释放都由程序员自己管理。程序员自己管理堆内存可以提高了程序的效率,但是整体来说堆内存的管理是麻烦的,**C++11中引入了智能指针的概念,方便管理堆内存。**使用普通指针,容易造成堆内存泄露(忘记释放),二次释放,程序发生异常时 ......
指针 智能

含辞未吐,声若幽兰,史上最强免费人工智能AI语音合成TTS服务微软Azure(Python3.10接入)

所谓文无第一,武无第二,云原生人工智能技术目前呈现三足鼎立的态势,微软,谷歌以及亚马逊三大巨头各擅胜场,不分伯仲,但目前微软Azure平台不仅仅只是一个PaaS平台,相比AWS,以及GAE,它应该是目前提供云计算人工智能服务最全面的一个平台,尤其是语音合成领域,论AI语音的平顺、自然以及拟真性,无平 ......
幽兰 人工智能 人工 语音 Python3

真实世界的人工智能应用落地——OpenAI篇 ⛵

本文介绍大名鼎鼎的 OpenAI!概述其发展历程,并介绍几款已经实际落地的 AI 应用:GPT3、CLIP、DALL·E 2、Whisper、Codex、ChatGPT。 ......
人工智能 人工 智能 OpenAI 世界

[深度学习] 基于切片辅助超推理库SAHI优化小目标识别

对象检测是迄今为止计算机视觉中最重要的应用领域。然而,小物体的检测和大图像的推理仍然是实际使用中的主要问题,这是因为小目标物体有效特征少,覆盖范围少。小目标物体的定义通常有两种方式。一种是绝对尺度定义,即以物体的像素尺寸来判断是否为小目标,如在COCO数据集中,尺寸小于32×32像素的目标被判定为小 ......
小目 深度 SAHI

深度学习之Transformer网络

【博主使用的python版本:3.6.8】 本次没有额外的资料下载 Packages import tensorflow as tf import pandas as pd import time import numpy as np import matplotlib.pyplot as plt ......
Transformer 深度 网络

机器学习--起手式

几个贯穿始终的概念 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 当我们把人类学习简单事物的过程抽象为几个阶段,再将这些阶段通过不同的方法具体化为代码,依靠通过计算机的基础能力--计算。我们就可以让机器能够“学会”一些简单的事物。 我们首先将视线聚焦在最简单的判断 ......
机器

机器学习--要学点什么

前言 可以说掌握了机器学习,你就具备了与机器对话,充分利用机器为人类服务的能力。在人工智能时代,这将成为一项必备技能,就好比十年前你是编程大牛,二十年前你英语超好一样。因此,无论你是什么专业的学生,学一点机器学习的知识绝对只有好处,没有坏处. 但是由于目前学习机器学习是为了准备美赛,所以我并不打算死 ......
机器

从源码层面深度剖析Spring循环依赖

作者:郭艳红 以下举例皆针对单例模式讨论 图解参考 https://www.processon.com/view/link/60e3b0ae0e3e74200e2478ce 1、Spring 如何创建Bean? 对于单例Bean来说,在Spring容器整个生命周期内,有且只有一个对象。 Sprin ......
层面 源码 深度 Spring

【机器学习】李宏毅——Domain Adaptation(领域自适应)

本文介绍了Domain Adaptation(领域自适应)的相关知识,包括现在出现的具体问题、问题如何解决、所面对的各种情况等等。 ......
Adaptation 机器 领域 Domain

【深度思考】如何优雅的校验参数?

在日常的开发工作中,为了保证落库数据的完整性,参数校验绝对是必不可少的一部分,本篇文章就来讲解下在项目中该如何优雅的校验参数。 假设有一个新增学员的接口,一般第一步我们都会先校验学员信息是否正确,然后才会落库,简单起见,假设新增学员时只有2个字段:姓名、年龄。 @Data public class ......
深度 参数

把盏言欢,款款而谈,ChatGPT结合钉钉机器人(outgoing回调)打造人工智能群聊/单聊场景,基于Python3.10

就像黑火药时代里突然诞生的核弹一样,OpenAI的ChatGPT语言模型的横空出世,是人工智能技术发展史上的一个重要里程碑。这是一款无与伦比、超凡绝伦的模型,能够进行自然语言推理和对话,并且具有出色的语言生成能力。 ......

实用!7个强大的Python机器学习库!⛵

本文整理了7个非常有效的机器学习Python库:Prophet、Deep Lake、Optuna、pycm、NannyML、ColossalAI、emcee,用简单的方式编写复杂且耗时的代码,大大提升工作效率! ......
机器 Python

就离谱!使用机器学习预测2022世界杯:小组赛挺准,但冠亚季军都错了 ⛵

本文使用机器学习建模对 FIFA 2022世界杯结果进行了预测,赛后将其与真实结果进行比较,可以看出:小组赛到1/4决赛的预测准确率很高,半决赛和决赛的预测准确率为0,冠亚季军无一预测准确。 ......
季军 小组赛 小组 机器 世界

智能语音之远场关键词识别实践(二)

上篇(智能语音之远场关键词识别实践(一))讲了“远场关键词识别”项目中后端上的实践。本篇将讲在前端上的一些实践以及将前端和后端连起来形成一个完整的方案。下图是其框图:(麦克风阵列为圆阵且有四个麦克风,即有四个语音通道) 从上图可以看出,前端主要包括去混响、声源定位和波速形成(beamforming) ......
语音 关键词 关键 智能

全都会!预测蛋白质标注!创建讲义!解释数学公式!最懂科学的智能NLP模型Galactica尝鲜 ⛵

本文浅试Meta开源的大型AI语言模型『Galactica』,带大家体验安装与多场景使用。Galactica被称为“最懂科学的智能NLP模型”,能够预测蛋白质标注!创建讲义!解释数学公式!全都会! ......
讲义 蛋白质 公式 蛋白 Galactica

深度剖析 | 【JVM深层系列】[HotSpotVM研究系列] JVM调优的"标准参数"的各种陷阱和坑点分析(攻克盲点及混淆点)「 1 」

相信大多数人的理解是Major GC只针对老年代,Full GC会先触发一次Minor GC,不知对否?我参考了R大的分析和介绍,总结了一下相关的说明和分析结论。 ......
盲点 quot 深层 JVM HotSpotVM

深度学习之残差网络

资料下载 链接:https://pan.baidu.com/s/1mTqblxzWcYIRF7_kk8MQQA 提取码:7x6w 资料的下载真的很感谢(14条消息) 【中文】【吴恩达课后编程作业】Course 4 - 卷积神经网络 - 第二周作业_何宽的博客-CSDN博客 我找了几天resnet50 ......
残差 深度 网络

痞子衡嵌入式:低功耗&高性能边缘人工智能应用的新答案 - MCXN947

大家好,我是痞子衡,是正经搞技术的痞子。今天痞子衡给大家介绍的是恩智浦MCX系列MCU的新品MCXN947。 自 2015 年恩智浦和飞思卡尔合并成新恩智浦之后,关于它们各自的 Arm Cortex-M 内核通用微控制器代表作系列 LPC 和 Kinetis 接下来怎么发展一直没有定论(两个系列都在 ......

二叉树的最小深度问题

二叉树的最小深度问题 作者:Grey 原文地址: 博客园:二叉树的最小深度问题 CSDN:二叉树的最小深度问题 题目描述 给定一个二叉树,找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明:叶子节点是指没有子节点的节点。 题目链接见:LeetCode 111. Mini ......
深度 问题

深度学习炼丹-数据增强

在工业界,数据预处理步骤对模型精度的提高的发挥着重要作用。对于机器学习任务来说,广泛的数据预处理一般有四个阶段(视觉任务一般只需 Data Transformation): 数据清洗(Data Cleaning)、数据整合(Data Integration)、数据转换(Data Transforma... ......
深度 数据

深度学习炼丹-超参数调整

所谓超参数,即不是通过学习算法本身学习出来的,需要作者手动调整(可优化参数)的参数(理论上我们也可以设计一个嵌套的学习过程,一个学习算法为另一个学习算法学出最优超参数),卷积神经网络中常见的超参数有: 优化器学习率、训练 Epochs 数、批次大小 batch_size 、输入图像尺寸大小。 ......
深度 参数

深度学习炼丹-不平衡样本的处理

数据层面的处理方法总的来说分为数据扩充和数据采样法,数据扩充会直接改变数据样本的数量和丰富度,采样法的本质是使得输入到模型的训练集样本趋向于平衡,即各类样本的数目趋向于一致。 ......
样本 深度

【机器学习】李宏毅——机器学习任务攻略

【机器学习】李宏毅——机器学习任务攻略,主要内容是讲解了如果出现了测试集误差较大的情况应该如何进行判断以及解决 ......
机器 任务攻略 任务 攻略

【机器学习】李宏毅——Explainable ML(可解释性的机器学习)

在前面的学习之中,我们已经学习了很多的模型,它能够针对特定的任务,接受我们的输入并产生目标的输出。但我们并不满足于此,我们甚至希望机器告诉我们,它是如何得到这个答案的,而这就是可解释的机器学习。 Why we need Explainable ML 首先我们要明确,即使我们训练出来的模型能够得到一个 ......
解释性 机器 Explainable ML

机器学习——人脸性别识别

一、选题背景 人脸识别技术是模式识别和计算机视觉领域最富挑战性的研究课题之一,也是近年来的研究热点,人脸性别识别作为人脸识别技术的重要组成部分也受到了广泛地关注。人脸性别识别就是向计算机输入人脸图像,经过某种方法或运算,得出其性别。这种识别对人眼来说很简单,但对计算机却并不是一件容易的事情。 二、机 ......
人脸 性别 机器

【机器学习】李宏毅——Transformer

本文详细地介绍了Transformer算法,介绍了其内部重要的Encoder和Decoder,以及具体的实现过程和原理,还介绍了其训练过程以及训练过程中应该注意的种种问题。 ......
Transformer 机器