带遗忘因子的递推最小二乘法推导

发布时间 2023-05-04 08:20:12作者: 找不到服务器zhn

摘要:最小二乘法的递推形式、直流信号的遗忘递推形式、遗忘递推最小二乘。

递推最小二乘法

对多组数据 \(\vec{x}_i\)\(y_i\),满足

\[y_i = \vec{x}^\mathrm{T}_i\vec{\theta} \]

其中 \(\vec{x}_i\) 是输入数据向量,\(y_i\) 是输出数据标量。写成矩阵形式

\[\vec{y} = X\vec{\theta} \]

其中(以3组数据、2个未知参数为例)

\[\vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}, X = \begin{bmatrix} \vec{x}^\mathrm{T}_1 \\ \vec{x}^\mathrm{T}_2 \\ \vec{x}^\mathrm{T}_3 \end{bmatrix}, \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix}, y_i=x_{i1}\theta_1+x_{i2}\theta_2 \]

完整地写作(以3组数据、2个未知参数为例)

\[\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} =\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \\ \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \]

\(k\)组数据时记作

\[ X^\mathrm{T}_k = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_k \end{bmatrix} \\ \vec{y}_k=\begin{bmatrix} y_1 & y_2 & \cdots & y_k\end{bmatrix} \]

(此时注意区分一些符号,例如 \(\vec{y}_k\)\(y_k\)\(X\)\(\vec{x}\) 等)
已知最小二乘法的解为

\[ \vec{\theta} =(X^\mathrm{T}X)^{-1} X^\mathrm{T}\vec{y} \tag{1} \]

\(P = (X^\mathrm{T}X)^{-1}\)
则加上递推后

\[ \begin{aligned} P_k^{-1} =& X_k^\mathrm{T}X_k = \sum_{i=1}^k\vec{x}_i\vec{x}^\mathrm{T}_i\\ =& \sum_{i=1}^{k-1}\vec{x}_i\vec{x}^\mathrm{T}_i +\vec{x}_k\vec{x}^\mathrm{T}_k \\ =& P_{k-1}^{-1} + \vec{x}_k\vec{x}_k^\mathrm{T} \tag{2} \end{aligned} \]

同理可得

\[ X_k^\mathrm{T}\vec{y}_k =X_{k-1}^\mathrm{T}\vec{y}_{k-1} +\vec{x}_ky_k \tag{3} \]

于是代入式(1)得到

\[\begin{aligned} \vec{\theta}_k =& P_kX_k^\mathrm{T}\vec{y}_k \\ =& P_k(X_{k-1}^\mathrm{T}\vec{y}_{k-1} +\vec{x}_ky_k) \\ =& P_k(P_{k-1}^{-1}\vec{\theta}_{k-1} +\vec{x}_ky_k) \\ =& P_k(P_k^{-1}\vec{\theta}_{k-1} -\vec{x}_k\vec{x}_k^\mathrm{T}\theta_{k-1}+\vec{x}_ky_k) \\ =& \vec{\theta}_{k-1} + P_k\vec{x}_k (y_k-\vec{x}_k^\mathrm{T}\theta_{k-1}) \\ =& \vec{\theta}_{k-1} +(P_{k-1}^{-1} + \vec{x}_k\vec{x}_k^\mathrm{T})^{-1} \vec{x}_k(y_k-\vec{x}_k^\mathrm{T}\theta_{k-1}) \\ =& \vec{\theta}_{k-1} +(P_{k-1}-\frac{P_{k-1}\vec{x}_k\vec{x}_k^\mathrm{T} P_{k-1}}{1+\vec{x}_k^\mathrm{T}P_{k-1}\vec{x}_k}) \vec{x}_k(y_k-\vec{x}_k^\mathrm{T}\theta_{k-1}) \\ \end{aligned}\]

其中倒数第3行到倒数第一行的过程

\[ P_k = P_{k-1}-\frac{P_{k-1}\vec{x}_k\vec{x}_k^\mathrm{T} P_{k-1}}{1+\vec{x}_k^\mathrm{T}P_{k-1}\vec{x}_k} \]

用到了下面的矩阵求逆公式及其引理

\[\begin{aligned} (A+BCD)^{-1} =& A^{-1}-A^{-1} B (DA^{-1}B+C^{-1})^{-1}DA^{-1} \\ (A+\vec{u}\vec{u}^\text{T})^{-1} =& A^{-1} -\frac{A^{-1}\vec{u}\vec{u}^\text{T} A^{-1}} {1+\vec{u}^\text{T}A^{-1}\vec{u}} \end{aligned}\]

\[ K_k = \frac{P_{k-1}\vec{x}_k} {1+\vec{x}_k^\mathrm{T}P_{k-1}\vec{x}_k} \]

\[\begin{aligned} P_k =& (I-K_k\vec{x}_k^\mathrm{T})P_{k-1}\\ P_k\vec{x}_k =& P_{k-1}\vec{x}_k -K_k\vec{x}_k^\mathrm{T}P_{k-1}\vec{x}_k \\ =& \frac{P_{k-1}\vec{x}_k (1+\vec{x}_k^\mathrm{T}P_{k-1}\vec{x}_k) -P_{k-1}\vec{x}_k\vec{x}_k^\mathrm{T} P_{k-1}\vec{x}_k} {1+\vec{x}_k^\mathrm{T}P_{k-1}\vec{x}_k} \\ =& \frac{P_{k-1}\vec{x}_k} {1+\vec{x}_k^\mathrm{T}P_{k-1}\vec{x}_k} \\ =& K_k \\ \end{aligned}\]

总结成递推公式得到

\[\begin{aligned} K_k =& \frac{P_{k-1}\vec{x}_k}{1+\vec{x}_k^\mathrm{T} P_{k-1}\vec{x}_k}\\ P_k =& (I-K_k\vec{x}_k^\mathrm{T})P_{k-1} \\ \vec{\theta}_k =& \vec{\theta}_{k-1} +K_k(y_k-\vec{x}_k^\mathrm{T}\theta_{k-1}) \end{aligned}\]

  因为 \(P=(X^\text{T}X)^{-1}\)\(\vec{x}_1\vec{x}_1^\text{T}\) 一般很小,所以实际使用时一般把 \(P_1\) 初始化为一个接近无穷大的单位阵。

引入遗忘因子

先考虑一个比较简单的情况

\[x_n=\theta+w_n \]

其中 \(\theta\) 是要估计的参数,\(w_n\) 是高斯白噪声,\(x_n\) 是观测到的数据,总共有 \(N\) 组数据,将 \(N\) 组数据取平均得到 \(\theta\) 的一个估计值为

\[\hat{\theta}=\frac{1}{N}\sum_{n=1}^Nx_n \]

写成递推形式为

\[\hat\theta_n=\hat\theta_{n-1}+\frac{1}{n}(x_n-\hat\theta_{n-1}) \]

例如,

\[\begin{aligned} \hat\theta_1 =& x_1\\ \hat\theta_2 =& \hat\theta_1+\frac{1}{2}(x_2-\hat\theta_1) =\frac{1}{2}(x_1+x_2) \\ \hat\theta_3 =& \hat\theta_2+\frac{1}{3}(x_3-\hat\theta_2) =\frac{1}{3}(x_1+x_2+x_3) \\ \end{aligned}\]

现在对之前的值乘一个衰减系数 \(\lambda\in(0,1)\),也就是

\[\begin{aligned} \hat\theta_2 =& \frac{1}{\lambda+1}(\lambda x_1+x_2) \\ \hat\theta_3 =& \frac{1}{\lambda^2+\lambda+1}(\lambda^2x_1+\lambda x_2+x_3) \\ \vdots \end{aligned}\]

写成递推形式为

\[\begin{aligned} \hat\theta_2=&\frac{1}{\lambda+1}(\lambda x_1+x_2) \\ \hat\theta_3=&\frac{1}{\lambda^2+\lambda+1}(\lambda(\lambda+1)\hat\theta_2+x_3) \\ =&\hat\theta_2+\frac{1}{\lambda^2+\lambda+1}(x_3-\hat\theta_2) \end{aligned}\]

\(n\rightarrow\infty\) 时,递推形式可以近似为

\[\begin{aligned} \hat{\theta}_n =& \hat\theta_{n-1}+\frac{1}{\sum_{n=1}^N\lambda^{n}}(x_n-\hat\theta_{n-1}) \\ =& \hat\theta_{n-1}+(1-\lambda)(x_n-\hat\theta_{n-1}) \end{aligned}\]

递推最小二乘中的遗忘因子

类似地,在最小二乘的误差 \(S_i=||y_i-\vec{x}_i^\text{T}\vec\theta||^2\) 中加入遗忘因子,得到总误差(以3组数据为例)

\[J_3=\lambda^2S_1+\lambda S_2+S_3 \]

完整的方程可以写作

\[\vec{y}_3=X_3\theta \\ \begin{bmatrix} \lambda y_1 \\ \sqrt{\lambda}y_2 \\ y_3 \end{bmatrix} =\begin{bmatrix} \lambda x_{11} & \lambda x_{12} \\ \sqrt{\lambda}x_{21} & \sqrt{\lambda}x_{22} \\ x_{31} & x_{32} \\ \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \]

类似地代入最小二乘的解式(1),并求式(2)(3)的递推形式

\[\begin{aligned} X_2^\text{T}X_2 =& \begin{bmatrix} \sqrt{\lambda}x_{11} & x_{21} \\ \sqrt{\lambda}x_{12} & x_{22} \\ \end{bmatrix} \begin{bmatrix} \sqrt{\lambda}x_{11} & \sqrt{\lambda} x_{12} \\ x_{21} & x_{22} \end{bmatrix} \\ X_3^\text{T}X_3 =& \begin{bmatrix} \lambda x_{11} & \sqrt{\lambda}x_{21} & x_{31} \\ \lambda x_{12} & \sqrt{\lambda}x_{22} & x_{32} \\ \end{bmatrix} \begin{bmatrix} \lambda x_{11} & \lambda x_{12} \\ \sqrt{\lambda}x_{21} & \sqrt{\lambda} x_{22} \\ x_{31} & x_{32} \end{bmatrix} \\ =& \lambda X_2^\text{T}X_2 + \vec{x}_3\vec{x}_3^\text{T} \\ X_2^\text{T}\vec{y}_2 =& \begin{bmatrix} \sqrt{\lambda}x_{11} & x_{21} \\ \sqrt{\lambda}x_{12} & x_{22} \\ \end{bmatrix} \begin{bmatrix} \sqrt{\lambda}y_1 \\ y_2 \end{bmatrix} \\ X_3^\text{T}\vec{y}_3 =& \begin{bmatrix} \lambda x_{11} & \sqrt{\lambda}x_{21} & x_{31} \\ \lambda x_{12} & \sqrt{\lambda}x_{22} & x_{32} \\ \end{bmatrix} \begin{bmatrix} \lambda y_1 \\ \sqrt{\lambda}y_2 \\ y_3 \end{bmatrix} \\ =& \lambda X_2^\text{T}\vec{y}_2 + \vec{x}_3y_3 \end{aligned}\]

\[\begin{aligned} P_k^{-1} =& \lambda P_{k-1}^{-1} + \vec{x}_k\vec{x}_k^\text{T} \\ X_k^\text{T}\vec{y}_k =& \lambda X_{k-1}^\text{T}\vec{y}_{k-1} + \vec{x}_ky_k \end{aligned}\]

代入式(1)得到

\[\begin{aligned} \vec{\theta}_k =& P_kX_k^\text{T}\vec{y}_k \\ =& P_k(\lambda X_{k-1}^\text{T}\vec{y}_{k-1} + \vec{x}_ky_k) \\ =& P_k(\lambda P_{k-1}^{-1}\vec{\theta}_{k-1} + \vec{x}_ky_k) \\ =& P_k(P_k^{-1}\vec{\theta}_{k-1} -\vec{x}_k\vec{x}_k^\text{T}\theta_{k-1}+\vec{x}_ky_k) \\ =& \vec\theta_{k-1} + P_k\vec{x}_k(y_k-\vec{x}_k^\text{T}\theta_{k-1}) \\ =& \vec\theta_{k-1} + (\lambda P_{k-1}^{-1} + \vec{x}_k\vec{x}_k^\text{T})^{-1} \vec{x}_k(y_k-\vec{x}_k^\text{T}\theta_{k-1}) \\ =& \vec\theta_{k-1}+(\frac{P_{k-1}}{\lambda} -\frac{\frac{P_{k-1}}{\lambda}\vec{x}_k\vec{x}_k^\text{T} \frac{P_{k-1}}{\lambda}}{1+\vec{x}_k^\text{T}\frac{P_{k-1}}{\lambda}\vec{x}_k}) \vec{x}_k(y_k-\vec{x}_k^\text{T}\theta_{k-1}) \\ =& \vec\theta_{k-1}+(\frac{P_{k-1}}{\lambda} -\frac{1}{\lambda}\frac{P_{k-1}\vec{x}_k\vec{x}_k^\text{T}P_{k-1}} {\lambda + \vec{x}_k^\text{T}P_{k-1}\vec{x}_k}) \vec{x}_k(y_k-\vec{x}_k^\text{T}\theta_{k-1}) \\ \end{aligned}\]

\[K_k = \frac{P_{k-1}\vec{x}_k} {\lambda+\vec{x}_k^\mathrm{T}P_{k-1}\vec{x}_k} \]

\[\begin{aligned} P_k =& \frac{1}{\lambda}(I-K_k\vec{x}_k^\mathrm{T})P_{k-1}\\ P_k\vec{x}_k =& \frac{1}{\lambda}(P_{k-1}\vec{x}_k -K_k\vec{x}_k^\mathrm{T}P_{k-1}\vec{x}_k) \\ =& \frac{1}{\lambda}\frac{P_{k-1}\vec{x}_k (\lambda+\vec{x}_k^\mathrm{T}P_{k-1}\vec{x}_k) -P_{k-1}\vec{x}_k\vec{x}_k^\mathrm{T} P_{k-1}\vec{x}_k} {\lambda+\vec{x}_k^\mathrm{T}P_{k-1}\vec{x}_k} \\ =& \frac{1}{\lambda}\frac{P_{k-1}\vec{x}_k\lambda} {\lambda+\vec{x}_k^\mathrm{T}P_{k-1}\vec{x}_k} \\ =& K_k \\ \end{aligned}\]

总结成递推公式得到

\[\begin{aligned} K_k =& \frac{P_{k-1}\vec{x}_k}{\lambda+\vec{x}_k^\mathrm{T} P_{k-1}\vec{x}_k}\\ P_k =& \frac{1}{\lambda}(I-K_k\vec{x}_k^\mathrm{T})P_{k-1} \\ \vec{\theta}_k =& \vec{\theta}_{k-1} +K_k(y_k-\vec{x}_k^\mathrm{T}\theta_{k-1}) \end{aligned}\]

与不带遗忘因子的公式相比,第3个式子 \(\vec{\theta}_k\) 不变,前两个稍微有变化。

一个例子与代码

  对方程 \(y=ax^2+bx+c\),输入多组数据,\(x\) 取一些高斯噪声,以4组数据为例,

\[\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} =\begin{bmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \\ x_4^2 & x_4 & 1 \\ \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} \]

#include <iostream>
#include <cmath>
#include "zhnmat.hpp"
using namespace zhnmat;
using namespace std;
int main() {
    constexpr double a = 0.5;
    constexpr double b = 1.1;
    constexpr double c = 2.1;
    double U, V, randx;
    double y, lambda=0.5;
    Mat K;
    Mat vx(3, 1);
    Mat P = eye(3)*1e6;
    Mat theta(3, 1);
    for (int i = 0; i < 10; i++) {
        U = (rand()+1.0) / (RAND_MAX+1.0);
        V = (rand()+1.0) / (RAND_MAX+1.0);
        randx = sqrt(-2.0 * log(U))* cos(6.283185307179586477 * V);  // `randx`服从标准正态分布
        randx *= 2;
        vx.set(0, 0, randx*randx);
        vx.set(1, 0, randx);
        vx.set(2, 0, 1);
        y = a*randx*randx + b*randx + c;
        K = P * vx / (lambda + (vx.T() * P * vx).at(0, 0));
        P = (eye(3) - K * vx.T()) * P / lambda;
        theta = theta + K * (y - (vx.T() * theta).at(0, 0));
        cout << "theta" << theta << endl;
    }
    return 0;
}