深度 视觉 计算机

深度学习基础-损失函数详解

大多数深度学习算法都会涉及某种形式的优化,所谓优化指的是改变 x 以最小化或最大化某个函数 f(x) 的任务,我们通常以最小化 f(x) 指代大多数最优化问题。损失函数大致可分为两种:回归损失(针对连续型变量)和分类损失(针对离散型变量)。常用的减少损失函数的优化算法是“梯度下降法”(Gradien... ......
函数 深度 损失 基础

iOS根据两点经纬度坐标计算指南针方位角

需求 在地图导航时,始终保持当前路段竖直超前。 设计 因地图暴露的方法中只有设置地图相对于正北的方向角的方法。因此,需要实现“根据两点经纬度坐标计算指南针方位角”的算法,这样在每次切换路段时,调用算法计算新路段指南针方位角,然后设置地图相对于正北的方向角即可实现需求。 示意图如下: 算法实现原理详见 ......
方位角 经纬度 指南针 经纬 坐标

vivo 实时计算平台建设实践

vivo 实时计算平台是 vivo 实时团队基于 Apache Flink 计算引擎自研的覆盖实时流数据接入、开发、部署、运维和运营全流程的一站式数据建设与治理平台。 ......
实时 平台 vivo

数值计算:前向和反向自动微分(Python实现)

自动微分技术(称为“automatic differentiation, autodiff”)是介于符号微分和数值微分的一种技术,它是在计算效率和计算精度之间的一种折衷。自动微分不受任何离散化算法误差的约束,它充分利用了微分的链式法则和其他关于导数的性质来准确地计算它们。我们可以选择定义一种新的数据... ......
微分 数值 Python

[深度学习] 基于切片辅助超推理库SAHI优化小目标识别

对象检测是迄今为止计算机视觉中最重要的应用领域。然而,小物体的检测和大图像的推理仍然是实际使用中的主要问题,这是因为小目标物体有效特征少,覆盖范围少。小目标物体的定义通常有两种方式。一种是绝对尺度定义,即以物体的像素尺寸来判断是否为小目标,如在COCO数据集中,尺寸小于32×32像素的目标被判定为小 ......
小目 深度 SAHI

深度学习之Transformer网络

【博主使用的python版本:3.6.8】 本次没有额外的资料下载 Packages import tensorflow as tf import pandas as pd import time import numpy as np import matplotlib.pyplot as plt ......
Transformer 深度 网络

巧用视觉障眼法,还原 3D 文字特效

最近群里有这样一个有意思的问题,大家在讨论,使用 CSS 3D 能否实现如下所示的效果: 这里的核心难点在于,如何利用 CSS 实现一个立体的数字?CSS 能做到吗? 不是特别好实现,但是,如果仅仅只是在一定角度内,利用视觉障眼法,我们还是可以比较完美的还原上述效果的。 利用距离、角度及光影构建不一 ......
障眼 障眼法 特效 视觉 文字

设计模式实践---策略模式实现对大量计算公式的处理

业务流程: 1.用户根据需要选择的实验方案,每个实验方案对应一种计算公式,计算公式例如下面这种 2.将带有实验数据的PDF文件上传到特定位置,对PDF文件进行解析后将数据数据保存到数据库。 3.遍历所有方案,对每种方案使用特定的公式对数据库中的数据进行 重构前实现: 遍历方案,使用IF语句对使用的公 ......
模式 设计模式 对大 公式 策略

3D视觉算法初学概述

SLAM 是Simultaneous Localization and Mapping的缩写,中文译作“同时定位与地图构建”。它是指搭载特定传感器(单目、双目、RGB-D相机、Lidar)的主体,在没有环境先验信息的情况下,在运动过程中建立环境的模型,同时估计自己的运动。如果这里的传感器主要为相机,... ......
算法 视觉

从源码层面深度剖析Spring循环依赖

作者:郭艳红 以下举例皆针对单例模式讨论 图解参考 https://www.processon.com/view/link/60e3b0ae0e3e74200e2478ce 1、Spring 如何创建Bean? 对于单例Bean来说,在Spring容器整个生命周期内,有且只有一个对象。 Sprin ......
层面 源码 深度 Spring

图计算引擎分析——Gemini

前言 Gemini 是目前 state-of-art 的分布式内存图计算引擎,由清华陈文光团队的朱晓伟博士于 2016 年发表的分布式静态数据分析引擎。Gemini 使用以计算为中心的共享内存图分布式 HPC 引擎。通过自适应选择双模式更新(pull/push),实现通信与计算负载均衡 [‎1]。图 ......
引擎 Gemini

【深度思考】如何优雅的校验参数?

在日常的开发工作中,为了保证落库数据的完整性,参数校验绝对是必不可少的一部分,本篇文章就来讲解下在项目中该如何优雅的校验参数。 假设有一个新增学员的接口,一般第一步我们都会先校验学员信息是否正确,然后才会落库,简单起见,假设新增学员时只有2个字段:姓名、年龄。 @Data public class ......
深度 参数

OpenVINO计算机视觉模型加速

OpenVINO计算机视觉模型加速 OpenVINO介绍 计算机视觉部署框架,支持多种边缘硬件平台 Intel开发并开源使用的计算机视觉库 支持多个场景视觉任务场景的快速演示 四个主要模块: 1、开发环境搭建 安装cmake、Miniconda3、Notepad++、PyCharm、VisualSt ......
OpenVINO 模型 视觉 计算机

深度剖析 | 【JVM深层系列】[HotSpotVM研究系列] JVM调优的"标准参数"的各种陷阱和坑点分析(攻克盲点及混淆点)「 1 」

相信大多数人的理解是Major GC只针对老年代,Full GC会先触发一次Minor GC,不知对否?我参考了R大的分析和介绍,总结了一下相关的说明和分析结论。 ......
盲点 quot 深层 JVM HotSpotVM

深度学习之残差网络

资料下载 链接:https://pan.baidu.com/s/1mTqblxzWcYIRF7_kk8MQQA 提取码:7x6w 资料的下载真的很感谢(14条消息) 【中文】【吴恩达课后编程作业】Course 4 - 卷积神经网络 - 第二周作业_何宽的博客-CSDN博客 我找了几天resnet50 ......
残差 深度 网络

二叉树的最小深度问题

二叉树的最小深度问题 作者:Grey 原文地址: 博客园:二叉树的最小深度问题 CSDN:二叉树的最小深度问题 题目描述 给定一个二叉树,找出其最小深度。 最小深度是从根节点到最近叶子节点的最短路径上的节点数量。 说明:叶子节点是指没有子节点的节点。 题目链接见:LeetCode 111. Mini ......
深度 问题

深度学习炼丹-数据增强

在工业界,数据预处理步骤对模型精度的提高的发挥着重要作用。对于机器学习任务来说,广泛的数据预处理一般有四个阶段(视觉任务一般只需 Data Transformation): 数据清洗(Data Cleaning)、数据整合(Data Integration)、数据转换(Data Transforma... ......
深度 数据

深度学习炼丹-超参数调整

所谓超参数,即不是通过学习算法本身学习出来的,需要作者手动调整(可优化参数)的参数(理论上我们也可以设计一个嵌套的学习过程,一个学习算法为另一个学习算法学出最优超参数),卷积神经网络中常见的超参数有: 优化器学习率、训练 Epochs 数、批次大小 batch_size 、输入图像尺寸大小。 ......
深度 参数

深度学习炼丹-不平衡样本的处理

数据层面的处理方法总的来说分为数据扩充和数据采样法,数据扩充会直接改变数据样本的数量和丰富度,采样法的本质是使得输入到模型的训练集样本趋向于平衡,即各类样本的数目趋向于一致。 ......
样本 深度

计算存储分离在京东云消息中间件JCQ上的应用

作者:田寄远 JCQ 全名 JD Cloud Message Queue,是京东云自研、具有 CloudNative 特性的分布式消息中间件。 JCQ 设计初衷即为适应云特性的消息中间件;具有高可用、数据可靠性、副本物理隔离、服务自治、健康状态汇报、少运维或无运维、容器部署、弹性伸缩、租户隔离、按量 ......
中间件 消息 JCQ

将渲染计算搬到云端,开启低成本、强交互、沉浸式体验

云渲染可以解放本地计算需求,这意味着生产力的大幅提升。 云渲染的基本原理是将3D渲染应用部署到云端,接收本地的控制指令发送到云端,云端启动游戏引擎并进行画面渲染,编码成视频流传输到本地。 不难看出,云渲染技术的核心在于将计算搬到云端,对渲染出的画面进行流化的传输。而过程中渲染画面的抓取、编码、传输、 ......
云端 成本

深度学习-网络训练流程说明

1.背景 分类神经网络模型:Mobilenetv3。 深度学习框架:PyTorch。 Mobilenetv3简单的手写数字识别: 任务输入:一系列手写数字图片,其中每张图片都是28x28的像素矩阵。 任务输出:经过了大小归一化和居中处理,输出对应的0~9数字标签。 项目参考代码:https://gi ......
深度 流程 网络

在 win11 下搭建并使用 ubuntu 子系统(同时测试 win10)——(附带深度学习环境搭建)

对于一个深度学习从事者来说,Windows训练模型有着诸多不便,还好现在Windows的Ubuntu子系统逐渐完善,近期由于工作需求,配置了Windows的工作站,为了方便起见,搭建了Ubuntu子系统,网上教程比较多,但是都或多或少存在一些小问题(也许是他们没有遇到), 于是我自己在尝试中,将自己 ......
子系统 win 深度 同时 环境

在C#中使用Halcon开发视觉检测程序

简介 本文的初衷是希望帮助那些有其它平台视觉算法开发经验的人能快速转入Halcon平台下,通过文中的示例开发者能快速了解一个Halcon项目开发的基本步骤,让开发者能把精力完全集中到算法的开发上面。 首先,你需要安装Halcon,HALCON 18.11.0.1的安装包会放在文章末尾。安装包分开发和 ......
视觉 程序 Halcon

漫谈计算机网络:物理层 ----- 双绞线&光纤?,从最底层开始了解计算机网络

计网很枯燥? 听说你学习 计网 每次记了都会忘? 不妨抽时间和我一起多学学它👇 深入浅出,用你的空闲时间来探索计算机网络的硬核知识! 👇博主的上篇连载博客《初识图像处理技术》 图像处理技术:数字图像分割 图像分割、边界分割(边缘检测)、区域分割 - slowlydance2me - 博客园 (c ......

漫谈计算机网络:网络层 ------ 重点:IP协议与互联网路由选择协议

面试答不上?计网很枯燥? 听说你学习 计网 每次记了都会忘? 不妨抽时间和我一起多学学它👇 深入浅出,用你的空闲时间来探索计算机网络的硬核知识! 👇博主的上篇连载博客《初识图像处理技术》 图像处理技术:数字图像分割 图像分割、边界分割(边缘检测)、区域分割 - slowlydance2me - ......

漫谈计算机网络:应用层 ----- 从DNS域名解析到WWW万维网再到P2P应用

2022-12-04 18:31:01 纪念一下博主的《漫谈计算机网络》连载博客 浏览量破500了! 今天更新完结篇! 面试答不上?计网很枯燥? 听说你学习 计网 每次记了都会忘? 不妨抽时间和我一起多学学它👇 深入浅出,用你的空闲时间来探索计算机网络的硬核知识! 👇博主的上篇连载博客《初识图像 ......

为什么计算机中的负数要用补码表示?

本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。 前言 大家好,我是小彭。 在前面的文章里,我们聊到了计算机的冯·诺依曼架构的 3 个基本原则。其中第 1 个原则是计算机中所有信息都是采用二进制格式的编码。也就是说,在计算机中程序的数据和指令,以及用户输入的 ......
补码 负数 计算机

ADPCM(自适应差分脉冲编码调制)的原理和计算

ADPCM 用于解决 DPCM 的差值宽度问题, 通过定义一个差值表(例如IMA ADPCM 中使用 89个固定差值, 取值从7到32767), 将差值的范围放宽到16bit, 此时差值在数组中的编号只需要6bit就可以表示(0 - 88), 再进一步只记录编号的变化值, 就将变化量压缩到了4bit... ......
脉冲 编码 原理 ADPCM

AWS启示录:创新作帆,云计算的征途是汪洋大海

全文13100字,预计阅读时间15到20分钟。 开篇:创新是AWS发展的最持久驱动力 云计算,新世纪以来最伟大的技术进步之一,从2006年 Amazon Web Service(以下简称AWS)初创时的小试牛刀,到如今成长为一个巨大的行业和生态,已经走过16年的风雨历程。 Java之父詹姆斯·高斯林 ......
汪洋大海 启示录 征途 新作 大海