转自 机器 森林sklearn

acwing276机器任务的证明

假设我们已经给每一个任务分配了一种模式了 那么相同模式的任务排在一起的时候肯定重启次数最小 对涉及到的模式,我们还原回二分图上 就是在二分图上尽量选择少的节点(一种模式代表一次重启次数,因为相同模式都是放在一起的),使每一个任务都可以被安排 就可以转换为最小点覆盖问题 ......
机器 任务 acwing 276

机器视觉选型计算器,初级版,后续慢慢补充

做机器视觉的都知道,每次选型都得做各种计算,但是没有人把硬件选型做出一个工具,今天利用一点闲暇时间,几分钟吧,简单做了个,后续再把其他一些硬件选型公式计算器功能做上去,有需要的自取。 1.DPI相关计算器 2.工作距离相关计算器 3.待补充,编码器等 4.关于 有需要自行下载:链接 ......
计算器 视觉 机器

机器学习——Transformer

10.6.2节中比较了卷积神经网络(CNN)、循环神经网络(RNN)和自注意力(self-attention)。值得注意的是,自注意力同时具有并行计算和最短的最大路径长度这两个优势。因此,使用自注意力来设计深度架构是很有吸引力的。对比之前仍然依赖循环神经网络实现输入表示的自注意力模型 (Cheng  ......
Transformer 机器

机器学习——自注意力与位置编码

在深度学习中,经常使用卷积神经网络(CNN)或循环神经网络(RNN)对序列进行编码。 想象一下,有了注意力机制之后,我们将词元序列输入注意力池化中, 以便同一组词元同时充当查询、键和值。 具体来说,每个查询都会关注所有的键-值对并生成一个注意力输出。 由于查询、键和值来自同一组输入,因此被称为 自注 ......
注意力 编码 机器 位置

机器学习——多头注意力

在实践中,当给定相同的查询、键和值的集合时, 我们希望模型可以基于相同的注意力机制学习到不同的行为, 然后将不同的行为作为知识组合起来, 捕获序列内各种范围的依赖关系 (例如,短距离依赖和长距离依赖关系)。 因此,允许注意力机制组合使用查询、键和值的不同 子空间表示(representation s ......
多头 注意力 机器

python---通过钉钉机器人发送禅道缺陷标题

前言 目前大多数公司都是使用禅道,jira这些来管理缺陷,研发和测试每天站会或者周会都想知道昨天或者这周一共解决了多少个缺陷,如果每天都通过禅道上去查看可能有点麻烦且不方便,今天小编介绍一种方法,我们可以通过办公软件钉钉或者企业微信通过项目群中进行添加机器人,每天自动发送到群里,供大家参考查看。 钉 ......
机器人 缺陷 机器 标题 python

机器学习——Bahdanau 注意力

9.7节中探讨了机器翻译问题: 通过设计一个基于两个循环神经网络的编码器-解码器架构, 用于序列到序列学习。 具体来说,循环神经网络编码器将长度可变的序列转换为固定形状的上下文变量, 然后循环神经网络解码器根据生成的词元和上下文变量 按词元生成输出(目标)序列词元。 然而,即使并非所有输入(源)词元 ......
注意力 Bahdanau 机器

机器学习——注意力评分函数

10.2节使用了高斯核来对查询和键之间的关系建模。 (10.2.6)中的 高斯核指数部分可以视为注意力评分函数(attention scoring function), 简称评分函数(scoring function), 然后把这个函数的输出结果输入到softmax函数中进行运算。 通过上述步骤,将 ......
注意力 函数 机器

机器学习——注意力汇聚:Nadaraya-Watson 核回归

上节介绍了框架下的注意力机制的主要成分 图10.1.3: 查询(自主提示)和键(非自主提示)之间的交互形成了注意力汇聚; 注意力汇聚有选择地聚合了值(感官输入)以生成最终的输出。 本节将介绍注意力汇聚的更多细节, 以便从宏观上了解注意力机制在实践中的运作方式。 具体来说,1964年提出的Nadara ......

机器学习-小样本情况下如何机器学习

交叉验证是在机器学习建立模型和验证模型参数时常用的办法。交叉验证,顾名思义,就是重复的使用数据,把得到的样本数据进行切分,组合为不同的训练集和测试集,用训练集来训练模型,用测试集来评估模型预测的好坏。在此基础上可以得到多组不同的训练集和测试集,某次训练集中的某样本在下次可能成为测试集中的样本,即所谓 ......
机器 样本 情况

机器学习——注意力提示

查询、键和值 自主性的与非自主性的注意力提示解释了人类的注意力的方式, 下面来看看如何通过这两种注意力提示, 用神经网络来设计注意力机制的框架, 首先,考虑一个相对简单的状况, 即只使用非自主性提示。 要想将选择偏向于感官输入, 则可以简单地使用参数化的全连接层, 甚至是非参数化的最大汇聚层或平均汇 ......
注意力 机器

随机森林的优缺点

随机森林(Random Forest)是一种强大的集成学习算法,通过构建多个决策树并综合它们的结果来提高整体模型的性能。以下是随机森林的优缺点: 优点: 高准确性: 随机森林通常能够提供较高的预测准确性,尤其在处理复杂数据和高维数据时表现出色。 鲁棒性: 由于随机森林平均了多个决策树的结果,因此对于 ......
优缺点 森林

零基础机器学习数字识别MNIST(on going)

本人之前并未涉及机器学习,但是在嵌入式中都会涉及视觉,借校内比赛从零学习,进行MNIST数字识别模型的搭建。 随着学习进度更新,每天更新。2023-11-15 21:38:55 星期三 一、环境搭建 进行本模型的搭建,需要以下内容: Python环境:利用Anaconda管理 开源机器学习平台:Py ......
机器 数字 基础 MNIST going

机器码备份_二

[yhzr]有意合作联系扣扣:1176769884$$$AA24C7BD5A0A8FE8E06E1FB53BBE8AD4:00|66|88_CF4DF748256261B751D029853C3DA5BC:00|01|02|03|04|10|11|12|13|14|20|21|22|23|24|30 ......
机器码 备份 机器

机器学习——束搜索、贪心搜索、穷举搜索

束搜索(Beam Search)、贪心搜索(Greedy Search)和穷举搜索(Exhaustive Search)是在搜索领域常用的三种搜索算法,它们在不同的场景下有着不同的特点和应用。 束搜索(Beam Search): 束搜索是一种用于寻找最有可能的输出序列的搜索算法,常用于序列生成任务, ......
机器

随机森林(Random Forest)

随机森林(Random Forest)是一种强大的集成学习算法,通过构建多个决策树,并结合它们的预测结果来提高整体模型的性能和鲁棒性。以下是随机森林的详细解释: 随机森林的构建过程: Bootstrap抽样: 对于给定的包含N个样本的原始数据集,进行有放回的随机抽样,构造一个新的样本集,大小也为N。 ......
森林 Random Forest

机器学习——序列到序列学习(seq2seq)

我们将使用两个循环神经网络的编码器和解码器, 并将其应用于序列到序列(sequence to sequence,seq2seq)类的学习任务。 编码器 由于这里使用的是门控循环单元, 所以在最后一个时间步的多层隐状态的形状是 (隐藏层的数量,批量大小,隐藏单元的数量)。 如果使用长短期记忆网络,st ......
序列 seq 机器 seq2seq 2seq

机器学习中的分类和回归

机器学习中的分类和回归是两种主要的预测建模任务,它们分别处理不同类型的输出变量。 分类(Classification): 定义: 分类是一种监督学习任务,其目标是将输入数据映射到预定义的类别中。在分类问题中,模型的输出是一个离散的类别标签。 例子: 例如,垃圾邮件过滤是一个二分类问题,其中模型需要将 ......
机器

统计学强调低维空间问题的统计推导,机器学习强调高维预测问题

统计学和机器学习在处理数据和模型时的侧重点确实有一些区别,其中涉及到低维和高维空间的问题。 统计学强调低维空间问题的统计推导: 统计学通常关注的是从一组有限样本中获得总体特征的推断。在传统统计学中,数据通常被认为是在低维空间中采样的,即特征的数量相对较少。例如,在古典统计中,可能会考虑一些变量对某个 ......
高维 维空间 问题 统计学 机器

微信机器人开发文档

请求URL: http://域名地址/acceptUser 请求方式: POST 请求头Headers: Content-Type:application/json Authorization:login接口返回 参数: 参数名必选类型说明 wId 是 string 登录实例标识 v1 是 stri ......
机器人 机器 文档

机器学习——编码器和解码器架构

正如我们在 9.5节中所讨论的, 机器翻译是序列转换模型的一个核心问题, 其输入和输出都是长度可变的序列。 为了处理这种类型的输入和输出, 我们可以设计一个包含两个主要组件的架构: 第一个组件是一个编码器(encoder): 它接受一个长度可变的序列作为输入, 并将其转换为具有固定形状的编码状态。 ......
编码器 解码器 架构 编码 机器

机器学习——机器翻译与数据集

语言模型是自然语言处理的关键, 而机器翻译是语言模型最成功的基准测试。 因为机器翻译正是将输入序列转换成输出序列的 序列转换模型(sequence transduction)的核心问题。 序列转换模型在各类现代人工智能应用中发挥着至关重要的作用。机器翻译(machine translation)指的 ......
机器 数据

机器学习——深度循环神经网络

到目前为止,我们只讨论了具有一个单向隐藏层的循环神经网络。 其中,隐变量和观测值与具体的函数形式的交互方式是相当随意的。 只要交互类型建模具有足够的灵活性,这就不是一个大问题。 然而,对一个单层来说,这可能具有相当的挑战性。 之前在线性模型中,我们通过添加更多的层来解决这个问题。 而在循环神经网络中 ......
神经网络 深度 神经 机器 网络

机器学习——长短期记忆网络(LSTM)

长期以来,隐变量模型存在着长期信息保存和短期输入缺失的问题。 解决这一问题的最早方法之一是长短期存储器(long short-term memory,LSTM)(Hochreiter and Schmidhuber, 1997)。 它有许多与门控循环单元( 9.1节)一样的属性。 有趣的是,长短期记 ......
长短 机器 记忆 网络 LSTM

机器学习——门控循环单元(GRU)

在 8.7节中, 我们讨论了如何在循环神经网络中计算梯度, 以及矩阵连续乘积可以导致梯度消失或梯度爆炸的问题。 下面我们简单思考一下这种梯度异常在实践中的意义: 我们可能会遇到这样的情况:早期观测值对预测所有未来观测值具有非常重要的意义。 考虑一个极端情况,其中第一个观测值包含一个校验和, 目标是在 ......
单元 机器 GRU

x86机器上运行arm64 docker

Docker Hub 上可以找到各种非 x86_64 平台的镜像,但是在x86上直接运行会报错: panic: standard_init_linux.go:175: exec user process caused “exec format error” [recovered] 在 x86_64 ......
机器 docker x86 arm 86

Go实现Zabbix企业微信机器人告警

企业微信 应用通知的程序相对复杂点,见上篇文章 机器人告警相对简单点,只需一个url即可 企业微信里创建一个机器人 注意机器人的url,后续程序中需要使用 直接上程序sjgzbx_machine.go package main import ( "bytes" "encoding/json" "fm ......
机器人 机器 Zabbix 企业

机器学习——通过时间反响传播

我们在 4.7节中描述了多层感知机中的 前向与反向传播及相关的计算图。 循环神经网络中的前向传播相对简单。 通过时间反向传播(backpropagation through time,BPTT) (Werbos, 1990)实际上是循环神经网络中反向传播技术的一个特定应用。 它要求我们将循环神经网络 ......
反响 机器 时间

机器学习——循环神经网络的实现

独热编码 回想一下,在train_iter中,每个词元都表示为一个数字索引, 将这些索引直接输入神经网络可能会使学习变得困难。 我们通常将每个词元表示为更具表现力的特征向量。 最简单的表示称为独热编码(one-hot encoding), 它在 3.4.1节中介绍过。 简言之,将每个索引映射为相互不 ......
神经网络 神经 机器 网络

机器学习——循环神经网络

隐状态 无隐状态的神经网络 有隐状态的循环神经网络 循环神经网络(recurrent neural networks,RNNs) 是具有隐状态的神经网络。 基于循环神经网络的字符级语言模型 回想一下 8.3节中的语言模型, 我们的目标是根据过去的和当前的词元预测下一个词元, 因此我们将原始序列移位一 ......
神经网络 神经 机器 网络
共1490篇  :10/50页 首页上一页10下一页尾页