微分流形Loring W. Tu section19 19.12 解答

发布时间 2023-12-08 17:28:13作者: 槛外人Liu

微分流形Loring W. Tu section19 19.12 解答,当然咯我自己也不知道是否严谨正确,反正就是自己的思考与想法,简单一写,欢迎友好讨论.

19.12 对于任意的\(f \in C^{\infty}(M)\), \(\forall p \in M\), 定义映射

\[\begin{aligned} \varphi: \mathfrak{X}(M) &\to Der(C^{\infty}(M))\\ X &\mapsto X_{p}f \end{aligned}\]

证明:\(\varphi\)是一个同构映射.

\(Proof.\) 线性和单射是非常容易验证的.下面我们讨论满射,

先考虑流形\(M\)上任意一个开集\(U\), 设\(D \in Der(C^{\infty}(M))\), 由$Taylor $定理,

\[f(x)=f(0)+\sum_{i}(x^{i}-p^{i})g_{i}(p) \]

其中,\(g_{i}(p)=\dfrac{\partial f }{\partial x^{i}} (p)\).

\[Df(x)=\sum_{i}(p^{i}-p^{i})Dg_{i}(x)+\sum_{i}D(x^{i})g_{i}(p) \]

\[Df(x)=\sum_{i}D(x^{i})g_{i}(p)=\sum_{i}D(x^{i})\dfrac{\partial f }{\partial x^{i}} (p) \]

\(X_{p}=\sum_{i}D(x^{i})\dfrac{\partial }{\partial x^{i}} |p \in \mathfrak{X}(M)\).

下面考虑在流形\(M\)上, 取一个图册\(\{(V_{i}, \varphi_{i}) \}\), 且\(V_{i} \subset U_{i}\), \(\theta_{i}\)为对应的单位分解. \(\forall i\), \(\theta_{i}D :f \to \theta_{i}Df \in Der(C^{\infty}(M))\). 这样定义了一个唯一的导子\(D_{i}\in C^{\infty}(U_{i})\),使得\(D_{i}(f|U_{i})=(\theta_{i}Df)|_{U_{i}}\).

\(\forall i\), 由上面的讨论可以知道\(D_{i}\)有原像\(X_{i}\in \mathfrak{X}(M)\), 而\(X_{i}\)\(supp \theta_{i}\)之外为\(0\),取\(X=\sum X_{i}\),

\[Xf=\sum X_{i}f=\sum D_{i}f=Df \]

故对于任意的\(D \in Der(C^{\infty}(M))\), 存在原像\(X=\sum X_{i}\). 故$\varphi $为满射.

这就完成了证明.