圆锥曲线6

发布时间 2024-01-06 10:53:59作者: 会飞的鱼13

隐藏的斜率和问题

已知双曲线\(C\)\(\dfrac{x^2}{2}-y^2=1\),直线\(l\)\(C\)\(P,Q\)两点.若直线\(AP,AQ\)\(y\)轴分别相交于\(M,N\)两点,且\(\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{0}\),证明:\(l\)过定点.

\(M(m,0)\)则由题\(M(0,-m)\)

从而有\(k_{AP}=\dfrac{1-m}{2},k_{AG}=\dfrac{1+m}{2}\)

\(k_{AP}+k_{AG}=1\)

则此题是一个常考模型,只是把斜率和、积为定值的这个前置条件隐藏了

\(AP:y-1-k_{AP}(x-2)=0,AG:y-1-k_{AG}(x-2)=0\)

两边相乘有

\[(y-1)^2-(y-1)(x-2)+k_{AP}k_{AG}(x-2)^2=0----(1) \]

又因双曲线\(C\)可以写成\(\dfrac{(y-1)(y+1)}{(x-2)(x+2)}=\dfrac{1}{2}\)

从而\(y-1=\dfrac{(x-2)(x+2)}{2(y+1)}\)

带回\((1)\)

\[\dfrac{(x-2)^2(x+2)^2}{4(y+1)^2}-\dfrac{(x-2)(x+2)}{2(y+1)}(x-2)+k_{AP}k_{AG}(x-2)^2=0 \]

\[(x+2)^2-2(x+2)(y+1)+4k_{AP}k_{AG}(y+1)^2=0----(2) \]

\(-2\cdot (1)+(2)\)消去\(xy\)

\[(x^2-2y^2+4x+4y+2)+2(-4y-2x)+2k_{AP}k_{AQ}(2y^2-x^2+4y+4x-2)=0 \]

联立\(C:\dfrac{x^2}{2}-y^2=1\)\(x^2-2y^2=2\)

\[(4x+4y+2-2)+2(-4y-2x)+2k_{AP}k_{AQ}(2+4y+4x-2)=0 \]

整理得\(PQ\)方程

\[-4y+4+2k_{AP}k_{AQ}(4y+4x)=0 \]

从而过定点\((0,1)\)