圆锥曲线4

发布时间 2024-01-03 07:06:21作者: 会飞的鱼13

向量转换

对于椭圆\(\dfrac{y^2}{a^2}+\dfrac{x^2}{b^2}=1(a>b>0)\),我们称双曲线\(\dfrac{y^2}{a^2}-\dfrac{x^2}{b^2}=1\)为其伴随双曲线.已知椭圆\(C:\dfrac{y^2}{3}+\dfrac{x^2}{b^2}=1(0<b<\sqrt{3})\),它的离心率是其伴随双曲线\(\Gamma\)离心率的\(\dfrac{\sqrt{2}}{2}\)倍.

\((1)\) 求椭圆伴随双曲线\(\Gamma\)的方程

\((2)\) 如图,点\(E,F\)分别是\(\Gamma\)的下顶点跟上焦点,过\(F\)的直线\(l\)\(\Gamma\)上支交与\(A,B\)两点,设\(\triangle ABO\)的面积为\(S,\angle AOB=\theta\).若\(\triangle ABE\)的面积为\(6+3\sqrt{3}\),求\(\dfrac{S}{\tan\theta}\).

\((1)\) \(\dfrac{y^2}{3}-x^2=1\)

\((2)\)\(S=\dfrac{1}{2}|AO|\cdot |BO|\sin\theta\)

\(\dfrac{S}{\tan\theta}=\dfrac{1}{2}|AO|\cdot |BO|\cos\theta=\dfrac{1}{2}\cdot\overrightarrow{OA}\cdot\overrightarrow{OB}\)

\(A:(x_1,y_1),B:(x_2,y_2),S_{\triangle ABE}=\dfrac{1}{2}|EF|\cdot|x_1-x_2|=\dfrac{\sqrt{3}+2}{2}\cdot|x_1-x_2|\)

又因\(\triangle ABE\)的面积为\(6+3\sqrt{3}\),所以\(|x_1-x_2|=6\)

\(AB:y=kx+2\)\(\Gamma\)联立有

\(x^2(k^2-3)+4kx+1\)

从而\(x_1+x_2=\dfrac{-4k}{k^2-3},x_1x_2=\dfrac{1}{k^2-3}\)

\(|x_1-x_2|=\sqrt{(x_1+x_2)^2-4x_1x_2}=\sqrt{\dfrac{16k^2-4(k^2-3)}{(k^2-3)^2}}=\sqrt{\dfrac{12k^2+12}{(k^2-3)^2}}\)

从而\((x_1-x_2)^2=\dfrac{12k^2+12}{(k^2-3)^2}=36\)

\(3k^4-17k^2+26=0\)解得\(k^2=2\)\(k^2=\dfrac{13}{3}\)

又因\(\Delta>0\)从而舍去\(k^2=\dfrac{13}{3}\)

\(\overrightarrow{OA}\cdot\overrightarrow{OB}=x_1x_2+y_1y_2=x_1x_2(1+k^2)+2k(x_1+x_2)+4=\dfrac{1+k^2-8k^2+4k^2-12}{k^2-3}=\dfrac{-3k^2-11}{k^2-3}=17\)

从而\(\dfrac{S}{\tan\theta}=\dfrac{17}{2}\)