圆锥曲线3

发布时间 2024-01-02 08:10:46作者: 会飞的鱼13

经典\(e^2-1\)应用

已知椭圆\(M:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a>b>0)\)的左右顶点为\(A\)\(B\)\(P\)是椭圆上异于\(A\)\(B\)的动点,满足\(k_{PB}\cdot k_{PB}=-\dfrac{1}{4}\),当\(P\)是当顶点时,\(\triangle ABP\)面积为\(2\)

\((1)\)\(M\)方程

\((2)\) 若直线\(AP\)交直线\(l:x=4\)于点\(C\),直线\(CB\)交椭圆于\(Q\)点,证明:\(PQ\)过定点.

\((1)\) \(\begin{cases} -\dfrac{b^2}{a^2}=-\dfrac{1}{4}\\ \\ ab=2 \end{cases}\Rightarrow a=2,b=1\).从而\(C:\dfrac{x^2 }{4}+y^2=1\)

\((2)\) 由椭圆第三定义得\(k_{AP}\cdot k_{PB}=-\dfrac{1}{4}\)

\(C:(4,m)\),则\(k_{AP}=\dfrac{m}{6},k_{BQ}=k_{CQ}=\dfrac{m}{2}\)

从而\(k_{AP}=\dfrac{1}{3}k_{BQ}\)

\(\dfrac{1}{3}k_{BP}\cdot k_{BQ}=-\dfrac{1}{4}\)

\(k_{BP}\cdot k_{BQ}=-\dfrac{3}{4}\)

\(BQ:y=k_{BQ}(x-2),BP:y=k_2(x-2)\)

\(BQ:y-k_{BP}(x-2)=0,BP:y-k_2(x-2)=0\)

两直线相乘有

\(y^2-y(x-2)(k_{BQ}+k_{BP})+k_{BQ}k_{BP}(x-2)^2=0\)

\(k_{BP}\cdot k_{BQ}=-\dfrac{3}{4}\)

从而\(y^2-y(x-2)(k_{BQ}+k_{BP})-\dfrac{3}{4}(x-2)^2=0\)

联立\(\dfrac{x^2 }{4}+y^2=1\)\(y^2=\dfrac{(2-x)(2+x)}{4}\)
带回有

\(\dfrac{(2-x)(2+x)}{4}-y(x-2)(k_{BQ}+k_{BP})-\dfrac{3}{4}(x-2)^2=0\)

即得到\(PQ\)直线: \(-\dfrac{2+x}{4}-y(k_{BQ}+k_{BP})-\dfrac{3}{4}(x-2)=0\)

\(-x+1-y(k_{BQ}+k_{BP})=0\)

过定点\((1,0)\).