晶体管

模拟集成电路设计系列博客—— 4.3.3 四晶体管MOSFET-C积分器

4.3.3 四晶体管MOSFET-C积分器 一种改进MOSFET-C滤波器线性度的方式是使用四晶体管MOSFET-C积分器,如下图所示[Czarnul,1986]: 对于这个四晶体管积分器的小信号分析,可以将单输入积分器处理成有着\((v_{pi}-v_{ni})\)和反相信号\((v_{ni}-v ......

模拟集成电路设计系列博客——4.3.2 双晶体管MOSFET-C积分器

4.3.2 双晶体管MOSFET-C积分器 MOSFET-C滤波器类似于全差分有源RC滤波器,除了电阻被等效的线性区MOS晶体管所取代。由于有源RC和MOSFET-C滤波器紧密关联,对于设计者来说,一个好处就是可以大量使用在有源RC滤波器上的已有知识。本小节我们讨论双晶体管MOSFET-C积分器。 ......

模拟集成电路设计系列博客——4.2.3 饱和区晶体管跨导器

4.2.3 饱和区晶体管跨导器 总体上来说,基于饱和区晶体管的跨导器会比基于线性区晶体管的跨导器在线性度上差一些,但是基于饱和区的跨导器在速度上有一定的优势。由于饱和区晶体管依赖于MOS管的平方律模型,而这个模型并不是非常精确,尤其是在短沟道工艺下,导致其线性度一般。此外,只有输出电流之差是理想线性 ......
晶体管 电路设计 晶体 电路 博客

ICEE-IGBT(绝缘栅双极型晶体管)的功率转换实例: 电磁加热

IGBT是什么?对电磁加热器意味着什么? 2021-03-04 15:17:34 浏览: 581 “ IGBT是什么?对电磁加热器意味着什么? ” 相信对电磁加热器稍有了解的朋友对IGBT模块都不会感觉陌生,在关于电磁加热器的优势介绍中,经常会说到电磁加热器的IGBT模块是进口自某国家的某个品牌,以 ......
晶体管 晶体 电磁 功率 ICEE-IGBT

模拟集成电路设计系列博客——4.2.2 线性区晶体管跨导器

4.2.2 线性区晶体管跨导器 本节我们将讨论使用工作在线性区的晶体管构成的跨导器。需要说明的是,在下面介绍的电路中,并不是所有的晶体管都处于先行区。一些晶体管被偏置在饱和区,但是电路的跨导由一到两个被偏置在线性区的关键晶体管来决定。 首先我们会议一下对于n管来说线性区的电流公式: \[I_D=\m ......
晶体管 电路设计 晶体 线性 电路

[GAA系列]详解台积电2纳米制程中的全环绕栅极(Gate-All-Around)晶体管技术

Section Ⅰ 半导体技术发展史的本质就是晶体管尺寸的缩小史。从上世纪七十年代的10微米节点开始,遵循着摩尔定律一步一步走到了今天的5纳米。在这一过程中,每当摩尔定律遭遇困境,总会有新的技术及时出现并引领着摩尔定律继续前行。自22纳米节点上被英特尔首次采用,鳍式场效应晶体管(FinFET)在过去 ......

ASEMI代理英飞凌IKW25N120T2功率晶体管介绍

编辑-Z 摘要:本文主要介绍IKW25N120T2功率晶体管的特点、应用领域、性能参数以及选型建议。 1、IKW25N120T2的特点 IKW25N120T2是一款N沟道MOSFET功率晶体管,具有低导通电阻、高开关速度、低输入电容等特点。此外,它还具有过温保护、过电流保护等功能,能够保证设备的安全 ......
晶体管 晶体 功率 ASEMI 120T

CPU通识课启发我的内容—从晶体管到生态宇宙

做CPU的理由 ①中国信息化生态的高额利润被国外厂商赚取②国外高端CPU有严重供应链风险,难以杜绝后面,受制于人(就有点像寄人篱下) ③信息安全:国外产品往往不提供设计资料和源代码。使用过程中常出现后门和漏洞,重要信息数据有被窃取、泄露的风险 ④缺少CPU影响企业生产产品(如工业控制),经营活动也会 ......
晶体管 晶体 宇宙 生态 内容

晶体管本征增益、截止频率

晶体管的本征增益$g_{m} r_{0}$ 可以理解为负载为无穷大时的增益,即由MOS本身参数生成的增益,比如简单共源极情况下,本征增益大小为 $g_{m} r_{0}$,$g_{m} r_{0}$为MOS本身的等效电阻。 晶体管的本征增益为$g_{m} r_{0}$,其中 $g_{ds}$又可以写 ......
晶体管 晶体 频率
共9篇  :1/1页 首页上一页1下一页尾页