每日导数18

发布时间 2023-12-26 07:59:20作者: 会飞的鱼13

重要放缩与观察配凑数列

函数\(f(x)=a\ln x+\dfrac{1}{2}x^2-(a+1)x+\dfrac{3}{2}(a>0)\)
\((1)\)求函数单调区间

\((2)\)\(a=1\)时,\(f(x_1)+f(x_2)=0\)证明:\(x_1+x_2\geq 2\)

\((3)\)求证:\(\forall n\in\mathbb{N}^{*}\)都有\(2\ln(n+1)+\displaystyle\sum\limits_{i=1}^{n}\left(\dfrac{i-1}{i}\right)^2>n\)

\((1)\) \(f^{\prime}(x)=\dfrac{a}{x}+x-a-1=\dfrac{x^2-(a+1)x+a}{x}=\dfrac{(x-a)(x-1)}{x}=0\)
\(x_1=1,x_2=a\)

\(a=1\)时,\(f^{\prime}(x)\geq 0\)\(f(x)\)单调递增

\(a>1\)时,\(f(x)\)\((0,1)\)\((a,+\infty)\)上单调递增在\((1,a)\)上单调递减

\(0<a<1\)时,\(f(x)\)\((0,a)\)\((1,+\infty)\)上单调递增在\((a,1)\)上单调递减

\((2)\) \(a=1,f(x)=\ln x+\dfrac{1}{2}x^2-2x+\dfrac{3}{2}\)

不难发现\(f(1)=0\),从而要使得\(f(x_1)+f(x_2)=0\)则要有\(0<x_1<1<x_2\)

则要证:\(x_1+x_2\geq 2\)

即证:\(x_2\geq2-x_1\)

即证:\(f(x_2)\geq f(2-x_1)\)

即证\(f(2-x_1)-f(x_2)=f(2-x_1)+f(x_1)\leq 0\)

\(f(2-x_1)+f(x_1)=\ln(2-x_1)+\dfrac{(2-x_1)^2}{2}-2(2-x_1)+\ln x_1+\dfrac{x_1^2}{2}-2x_1+3\)
\(=\ln x_1(2-x_1)+x_1^2-2x_1+1\leq 2x_1-x_1^2-1+x_1^2-2x_1+1=0\)

得证!

\((3)\)\(a=1,\)则由\(f(x)\)单调递增,则对任意的\(x\in[1,+\infty)\)\(f(x)>f(1)=0\)

\(\ln x+\dfrac{1}{2}x^2-2x+\dfrac{3}{2}>0\)

\(2\ln x+x^2-4x+3>0\)

\(2\ln x+(x-2)^2>1\)

\(\dfrac{i+1}{i}\)来代换\(x,i=1,2,3\cdots n\)

\(2\ln\dfrac{i+1}{i}+\left(\dfrac{1-i}{i}\right)^2>1\)

累加\(n\)项便有\(2\ln(n+1)+\displaystyle\sum\limits_{i=1}^{n}\left(\dfrac{i-1}{i}\right)^2>n\).

不等式得证!\(\square\)