每日导数30

发布时间 2024-01-12 07:01:13作者: 会飞的鱼13

常用的两个放缩应用,结构很明显

已知函数\(f(x)=\sin x\)

\((1)\)\(F(x)=f(x)-mx,\)\(F(x)\leq 0\)\([0,+\infty)\)上恒成立,求实数\(m\)的取值范围

\((2)\)\(G(x)=\dfrac{2}{3}f(x)+x-\dfrac{5}{3}a\ln x+2\)若存在\(x_1,x_2(x_1\neq x_2)\)满足\(G(x_1)=G(x_2)\),证明:\(x_1+x_2>2a\)

\((1)\) \(F(x)=\sin x-mx,F^{\prime}(x)=\cos x-m\)

\(m\geq 1\),则\(F^{\prime}(x)\leq 0\),从而\(F(x)\)单调递减

\(F(x)\leq F(0)=0\)合题

\(m<1\),则\(F^{\prime}(0)=1-m>0\),则由保号性,一定存在区间\((0,x_0)\)

\(F^{\prime}(x)>0\),从而在这个区间上\(F(x)>F(0)=0\)不合题

\((2)\) 不妨设\(x_1<x_2\)

\(G(x)=\dfrac{2}{3}\sin x+x-\dfrac{5}{3}a\ln x+2\)

\(\dfrac{2}{3}\sin x_1+x_1-\dfrac{5}{3}a\ln x_1+2=\dfrac{2}{3}\sin x_2+x_2-\dfrac{5}{3}a\ln x_2+2\)

\(\dfrac{2}{3}\left(\sin x_1-\sin x_2\right)+(x_1-x_2)=\dfrac{5a}{3}\left(\ln x_1-\ln x_2\right)\)

\(2(\sin x_1-\sin x_2)+3(x_1-x_2)=5a(\ln x_1-\ln x_2)\)

\((1)\)\(m=1\)时,有\(\sin x-x\)单调递减

\(\sin x_1-x_1>\sin x_2-x_2\)

\(\sin x_1-\sin x_2>x_1-x_2\)

\(5a(\ln x_1-\ln x_2)>2(x_1-x_2)+3(x_1-x_2)=5(x_1-x_2)\)

\(\dfrac{x_1-x_2}{\ln x_1-x_2}>a\)

又由对数均值不等式有

\(\dfrac{a+b}{2}>\dfrac{a-b}{\ln a-\ln b}\)

从而\(a<\dfrac{x_1-x_2}{\ln x_1-\ln x_2}<\dfrac{x_1+x_2}{2}\)

\(x_1+x_2>2a\)

得证!