每日导数24

发布时间 2024-01-03 07:06:21作者: 会飞的鱼13

\(\ln x<\dfrac{1}{2}\left(x-\dfrac{1}{x}\right),\ln x>\dfrac{1}{2}\left(x-\dfrac{1}{x}\right)\)放缩

已知函数\(f(x)=e^{\frac{1}{x}-a}+\ln x-a\)有两个零点\(x_1,x_2\)

\((1)\)\(a\)的取值范围

\((2)\) 证明:\(x_1+x_2>2a\)

\((1)\) \(e^{\frac{1}{x}-a}+\ln x-a=0\)

\(e^{\frac{1}{x}-a}+\dfrac{1}{x}+\ln x-\dfrac{1}{x}-a=0\)

\(e^{\frac{1}{x}-a}+\dfrac{1}{x}-a=\dfrac{1}{x}-\ln x=\dfrac{1}{x}+\ln\dfrac{1}{x}=e^{\ln\frac{1}{x}}+\ln\dfrac{1}{x}\)

考虑\(g(x)=e^x+x\)其单调递增

从而\(g\left(\dfrac{1}{x}-a\right)=g\left(\ln\dfrac{1}{x}\right)\)

从而\(\dfrac{1}{x}-a=\ln\dfrac{1}{x}\)有两个零点

\(a=\dfrac{1}{x}-\ln\dfrac{1}{x}\xlongequal{\frac{1}{x}=t}t-\ln t(t>0)\)有两个零点

\(h(t)=t-\ln t,h^{\prime}(t)=1-\dfrac{1}{t}\)

从而\(h(t)\)\((0,1)\)上单调递减,\((1,+\infty)\)上单调递增

从而\(a>1\)有两个零点

\((2)\)\((1)\)\(\begin{cases} a=\dfrac{1}{x_1}-\ln\dfrac{1}{x_1}\\ \\ a=\dfrac{1}{x_2}-\ln\dfrac{1}{x_2} \end{cases}\Rightarrow\begin{cases} ax_1=1+x_1\ln x_1\\ \\ ax_2=1+x_2\ln x_2 \end{cases}\)

不妨设\(0<x_1<1<x_2\)

\(0<x<1\)\(\ln x>\dfrac{1}{2}\left(x-\dfrac{1}{x}\right),x>1\)\(\ln x<\dfrac{1}{2}\left(x-\dfrac{1}{x}\right)\)

从而\(\begin{cases} ax_1=1+x_1\ln x_1>1+\dfrac{x_1}{2}\left(x_1-\dfrac{1}{x_1}\right)\\ \\ ax_2=1+x_2\ln x_2<1+\dfrac{x_2}{2}\left(x_2-\dfrac{1}{x_2}\right) \end{cases}\)

\(a(x_1-x_2)>\dfrac{(x_1-x_2)(x_2+x_1)}{2}\)

\(a<\dfrac{x_1+x_2}{2}\)

\(x_1+x_2>2a\)