每日导数29

发布时间 2024-01-11 08:41:28作者: 会飞的鱼13

数学分析味道很浓的一道题,可以当作找点问题的典型.

已知函数\(f(x)=e^x-ax^2-\cos x-\ln(x+1)\)

\((1)\)\(a=1\),求证:\(f(x)\)的图像与\(x\)轴相切与原点

\((2)\) 若函数\(f(x)\)在区间\((-1,0),(0,+\infty)\)上各恰有一个极值点,求实数\(a\)的取值范围.


\((1)\) \(a=1,f(x)=e^x-x^2-\cos x-\ln(x+1)\)

\(f^{\prime}(x)=e^x-2x+\sin x-\dfrac{1}{x+1},f^{\prime}(0)=1-1=0\)

\(f(0)=0\),从而在原点的切线跟\(x\)轴相切

\((2)\) \(f^{\prime}(x)=e^x-2ax+\sin x-\dfrac{1}{x+1},f^{\prime\prime}(x)=e^x+\cos x-2a+\dfrac{1}{(x+1)^2}\)

分析:先考虑\(x\in(-1,0)\)上,\(\lim\limits_{x\to -1^{+}}f^{\prime}(x)=-\infty,\lim\limits_{x\to 0}f^{\prime}(x)=0,\lim\limits_{x\to-1^{+}}f^{\prime\prime}(x)\to +\infty,\lim\limits_{x\to 0}f^{\prime\prime}(x)=3-2a\)

\(\lim\limits_{x\to-1^{+}}f^{\prime}(x)\to-\infty,\lim\limits_{x\to 0}f^{\prime}(x)= 0\)分析得知,\(f^{\prime}(x)\)\((-1,0)\)上一定是先增再减的

并且最大值要大于\(0\),但是因为\(\lim\limits_{x\to -1^{+}}f^{\prime}(x)=-\infty,\lim\limits_{x\to 0}f^{\prime}(x)=0\),这个条件如果说明了

先增再减是无需说明最大值大于\(0\)的,这是显而易见的.

从而也就是说明\(f^{\prime\prime}(x)\)先是正的再是负的,从而也说明了还得再次求导研究其正负

进而分析出\(\lim\limits_{x\to 0}f^{\prime\prime}(x)< 0\),即\(3-2a< 0\)\(a> \dfrac{3}{2}\).

\(a>\dfrac{3}{2}\)的情形下,\(\lim\limits_{x\to +\infty}f^{\prime}(x)=+\infty,f^{\prime\prime}(x)\to +\infty\)\(f^{\prime}(0)=0,f^{\prime\prime}(0)=3-2a<0\)

那么\(f^{\prime}(x)\)只有先减,再增才能使得其在\((0,+\infty)\)上只有一个零点.

从而\(f^{\prime\prime}(x)\)一定先小于\(0\)再大于\(0\),而\(f^{\prime\prime}(0)=3-2a<0\)

\(f^{\prime\prime}(x)\)要么先减再增,要么单调递增,如果还有其他的情况那就太复杂了不适合高中生.

\(f^{\prime\prime\prime}(x)=e^x-\sin x-\dfrac{2}{(x+1)^3}\)\(f^{\prime\prime\prime}(0)=-1<0,\lim\limits_{x\to+\infty}f^{\prime\prime\prime}(x)\to+\infty\)

因此要考虑下\(f^{(4)}(x)\)的情况

下面开始书写过程:


Case1.当\(a\leq \dfrac{3}{2}\)时,\(f^{\prime\prime\prime}(x)=e^x-\sin x-\dfrac{2}{(x+1)^3}<0\)

从而\(f^{\prime\prime\prime}(x)\)\((-1,0)\)上为负,即\(f^{\prime\prime}(x)\)单调递减,即\(f^{\prime\prime}(x)>3-2a>0\)

从而\(f^{\prime}(x)\)单调递增,在\((-1,0)\)没有极值点,不合题.

Case2.当\(a>\dfrac{3}{2}\)时,则一定存在\(x_0\in(-1,0)\)使得\(f^{\prime\prime}(x_0)=0\)

从而\(f^{\prime\prime}(x)\)\((-1,x_0)\)大于\(0\),在\((x_0,0)\)上小于\(0\)

从而\(f^{\prime}(x)\)\((-1,x_0)\)上单调递增,在\((x_0,0)\)上单调递减

而:\(\lim\limits_{x\to -1^{+}}f^{\prime}(x)=-\infty,\)\(\lim\limits_{x\to 0}f^{\prime}(x)=0\)

则说明\(f^{\prime}(x)\)\((-1,0)\)上一定存在唯一的零点

\(f(x)\)\((-1,0)\)上有唯一极值点

再看\(x\in(0,+\infty)\)

\(f^{\prime\prime\prime}(x)=e^x-\sin x-\dfrac{2}{(x+1)^3}\)

\(f^{\prime\prime\prime}(0)=-1<0,\lim\limits_{x\to+\infty}f^{\prime\prime\prime}(x)\to+\infty\)

\(f^{(4)}(x)=e^x-\cos x+\dfrac{6}{(x+1)^4}>0\),则\(f^{\prime\prime\prime}(x)\)单调递增

\(f^{\prime\prime\prime}(0)=-1<0,\lim\limits_{x\to+\infty}f^{\prime\prime\prime}(x)\to+\infty\),且是单调递增的

则一定有\(x_{1}\)使得\(f^{\prime\prime\prime}(x_1)=0\)

从而\(f^{\prime\prime}(x)\)\((0,x_1)\)递减,在\((x_1,+\infty)\)上递增

从而\(f^{\prime}(x)\)\((0,+\infty)\)上一定只有一个零点.

综上:\(a>\dfrac{3}{2}\).