每日导数23

发布时间 2024-01-02 08:10:46作者: 会飞的鱼13

简单的零点分析

已知\(f(x)=ae^x-\sin x-1\)

\((1)\)\(a=1\)证明:\(\forall x\in[0,+\infty),f(x)\geq 0\)

\((2)\)\(f(x)\)在区间\(\left(0,\dfrac{\pi}{2}\right)\)上存在极值,求实数\(a\)的取值范围.

\((1)\) \(a=1,f(x)=e^x-\sin x-1,f^{\prime}(x)=e^x-\cos x\geq 0\)

从而\(f(x)\)单调递增,进而\(f(x)\geq f(0)=0\)

得证.

\((2)\)

法一:

\(f^{\prime}(x)=ae^x-\cos x=0\)

\(a=\dfrac{\cos x}{e^x}\)

\(h(x)=\dfrac{\cos x}{e^x},h^{\prime}(x)=\dfrac{-\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right)}{e^x}\)

不难得到\(h(x)\)\(\left(0,\dfrac{\pi}{2}\right)\)上单调递减,而\(h(0)=1,h\left(\dfrac{\pi}{2}\right)=0\)

从而\(a\in(0,1)\)

法二:
\(f^{\prime}(x)=ae^x-\cos x\)

\(a\geq 1\),则\(f^{\prime}(x)\geq 0\),没有零点,从而\(f(x)\)没有极值.

\(0<a<1\)时,\(f^{\prime\prime}(x)=ae^x+\sin x>0\)

\(f^{\prime}(x)\)单调递增\(f^{\prime}(0)=a-1<0,f\left(\dfrac{\pi}{2}\right)=ae^{\frac{\pi}{2}}>0\)

从而由零点存在定理,\(f^{\prime}(x)\)\(\left(0,\dfrac{\pi}{2}\right)\)上存在零点,从而\(f(x)\)\(\left(0,\dfrac{\pi}{2}\right)\)上存在极值.

\(a\leq 0\)时,\(f^{\prime}(x)=ae^x-\cos x<0\),没有零点,从而\(f(x)\)没有极值.

综上\(a\in(0,1)\)