每日导数12

发布时间 2023-12-19 07:47:56作者: 会飞的鱼13

一道常规的求参

已知函数\(f(x)=e^x-1\)

\((1)\)\(g(x)=f(x)-ax\),讨论\(g(x)\)的单调性
\((2)\)\(x>0\)时,都有\((x-k-1)f(x)+x+1>0\)成立,求整数\(k\)的最大值


\((1)\) \(g(x)=e^x-1-ax\)
\(g^{\prime}(x)=e^x-a\)
\(a\leq 1时,\)\(g^{\prime}(x)\geq 0\)
\(a>1\)时,\(g^{\prime}(\ln a)=0\)
\(g(x)\)\(\left(0,\ln a\right)\)上单调递减,\((\ln a,+\infty)\)上单调递增

\((2)\) \((x-k-1)(e^x-1)+x+1>0\)
\((x-k-1)e^x+k+2>0\)
\(g(x)=(x-k-1)e^x+k+2\)
\(g^{\prime}(x)=e^x(x-k)\)
\(k\leq 0\)\(g^{\prime}(x)\geq 0\)
从而\(g(x)>g(0)=1>0\)恒成立.
\(k>0\)时,不难得到\(g(x)\)\((0,k)\)单调递减,\((k,+\infty)\)单调递增
从而\(g(x)>g(k)=-e^k+k+2>0\)
\(h(k)=k+2-e^k,h^{\prime}(k)=1-e^k<0\)
从而\(h(k)\)单调递减,又因\(h(1)=3-e>0,h(2)=4-e^2<0\)
从而\(k=1\)为题目所求的最大整数.