每日导数9

发布时间 2023-12-16 07:42:03作者: 会飞的鱼13

指对分离:\(x\ln x,xe^x\),下界大于上界
已知函数\(f(x)=\dfrac{ae^{x-1}}{x}+e(\ln x-x),a\in\mathbb{R}\)

\((1)\)\(f(x)\)\((1.+\infty)\)上单调递增,求\(a\)的取值范围

\((2)\)\(a\geq \dfrac{5}{2}\)时,证明:\(f(x)+(e-1)x>e^{x-1}(1-\ln x)+e\ln x\)

\((1)\) \(f^{\prime}(x)=\dfrac{ae^{x-1}(x-1)}{x^2}+e\left(\dfrac{1}{x}-1\right)=\dfrac{(x-1)(ae^{x-1}-ex)}{x^2}\)

\(ae^{x-1}-ex\geq 0\)

\(a\geq (xe^{-x})_{\max}=\dfrac{1}{e}\)

\((2)\) 原不等式为\(\dfrac{ae^{x-1}}{x}-x-e^{x-1}(1-\ln x)>0\)

\(ae^{x-1}-x^2-xe^{x-1}(1-\ln x)>0\)

即证:\(\dfrac{5}{2}e^{x-1}-x^2-xe^{x-1}(1-\ln x)>0\)

即证:\(\dfrac{5}{2}-x^2e^{1-x}-x(1-\ln x)>0\)

即证:\(\dfrac{5}{2}-x^2e^{1-x}>x(1-\ln x)\)

\(\varphi(x)=\dfrac{5}{2}-x^2e^{1-x}\),记\(\gamma(x)=x(1-\ln x)\)

\(\varphi^{\prime}(x)=-e^{1-x}(2x-x^2),\gamma^{\prime}(x)=-\ln x\)

从而\(\varphi(x)\)\((0,2)\)上单调递减,\((2,+\infty)\)单调递增

\(\gamma(x)\)\((0,1)\)上单调递增,\((1,+\infty)\)上单调递减

从而\(\varphi(x)\geq \varphi(2)=\dfrac{5}{2}-\dfrac{4}{e},\gamma(x)\leq \gamma(1)=1\)

从而\(\gamma(x)\leq 1<\dfrac{5}{2}-\dfrac{4}{e}\leq \varphi(x)\)

不等式得证!\(\square\)