每日导数6

发布时间 2023-12-13 07:53:24作者: 会飞的鱼13

观察放缩

已知函数\(f(x)=\dfrac{\sin x}{e^x}\)

\((1)\) 求函数\(f(x)\)\((0,3)\)上的单调区间

\((2)\)\(x>0\)时,\(f(x)\leq a\ln (x+1)\),求实数\(a\)的取值范围

\((1)\) \(f^{\prime}(x)=\dfrac{\cos x-\sin x}{e^x}=\dfrac{\sqrt{2}\sin\left(\dfrac{\pi}{4}-x\right)}{e^x}=0\)\(x_1=\dfrac{\pi}{4}+k\pi\)

\(x\in(0,3)\)从而\(f(x)\)\(\left(0,\dfrac{\pi}{4}\right)\)单调递增,\(\left(\dfrac{\pi}{4},3\right)\)单调递减.

\((2)\)原不等式为\(\sin x-ae^x\ln (x+1)\leq 0\)

\(G(x)=\sin x-ae^x\ln (x+1)\),不难发现\(G(0)=0\)

\(G^{\prime}(x)=\cos x-ae^x\ln(x+1)-\dfrac{ae^x}{x+1}\)

\(G^{\prime}(0)=1-a\)

\(1-a> 0\)\(a<1\)

由保号性,一定存在\((0,x_0)\),使得\(x\in(0,x_0)\)\(G^{\prime}(x)>0\)

从而\(G(x)\)\((0,x_0)\)上单调递增,进而\(G(x)>G(0)=0\)不合题,舍.

\(a\geq 1\),则\(G^{\prime}(x)=\cos x-ae^x\left[\ln(x+1)+\dfrac{1}{x+1}\right]\)

考虑\(\varphi(x)=\ln(x+1)+\dfrac{1}{x+1},\varphi^{\prime}(x)=\dfrac{1}{x+1}-\dfrac{1}{(x+1)^2}>0\)

从而\(\varphi(x)\)单调递增,进而\(\varphi(x)>\varphi(0)=1\)

所以\(\cos x-ae^x\left[\ln(x+1)+\dfrac{1}{x+1}\right]\leq \cos x-e^x\left[\ln(x+1)+\dfrac{1}{x+1}\right]\)

又因\(e^x>e^0=1\)

从而\(e^x\left[\ln(x+1)+\dfrac{1}{x+1}\right]>1\)

从而\(\cos x-e^x\left[\ln(x+1)+\dfrac{1}{x+1}\right]<0\)

从而\(G^{\prime}(x)\)恒为负,进而\(G(x)\)单调递减

则有\(G(x)<G(0)=0\) 合题.

综上,\(a\geq 1\).