每日导数11

发布时间 2023-12-18 07:22:19作者: 会飞的鱼13

再来点简单的

已知函数\(f(x)=e^x\cos x\)

\((1)\)\(f(x)\)的单调区间

\((2)\) \(F(x)=-f^{\prime}(x)-ax\)\(\left(\dfrac{\pi}{2},\pi\right)\)上有两个极值点,求实数\(a\)的取值范围.

\((1)\) \(f^{\prime}(x)=e^x(\cos x-\sin x)=\sqrt{2}e^x\cos\left(x+\dfrac{\pi}{4}\right)\)

\(f(x)\)的单调递增区间\(\left(2k\pi-\dfrac{3\pi}{4},2k\pi+\dfrac{\pi}{4}\right)\)

\(f(x)\)的单调递减区间\(\left(2k\pi+\dfrac{\pi}{4},2k\pi+\dfrac{5\pi}{4}\right)\)

\((2)\) \(F(x)=e^x(\sin x-\cos x)-ax,F^{\prime}(x)=2\sin xe^{x}-a=0\)有两解

\(a=2\sin xe^x\)有两解

\(y=a\)\(y=2e^x\sin x\)有两交点

\(G(x)=2\sin xe^x,G^{\prime}(x)=\sqrt{2}e^x\sin\left(x+\dfrac{\pi}{4}\right)\)

不难得到\(x\in\left(\dfrac{\pi}{2},\dfrac{3\pi}{4}\right)\)单调递增,\(x\in \left(\dfrac{3\pi}{4},\pi\right)\)上单调递减

作出草图不难得到

\(2e^{\frac{\pi}{2}}<a<\sqrt{2}e^{\frac{3\pi}{4}}\)